These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Olsson RH, Buhl DL, Sirota AM, Buzsaki G, Wise KD. IEEE Trans Biomed Eng; 2005 Jul; 52(7):1303-11. PubMed ID: 16041994 [Abstract] [Full Text] [Related]
5. Single-unit neural recording with active microelectrode arrays. Bai Q, Wise KD. IEEE Trans Biomed Eng; 2001 Aug; 48(8):911-20. PubMed ID: 11499528 [Abstract] [Full Text] [Related]
6. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. Vetter RJ, Williams JC, Hetke JF, Nunamaker EA, Kipke DR. IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856 [Abstract] [Full Text] [Related]
7. A novel high channel-count system for acute multisite neuronal recordings. Hofmann UG, Folkers A, Mösch F, Malina T, Menne KM, Biella G, Fagerstedt P, De Schutter E, Jensen W, Yoshida K, Hoehl D, Thomas U, Kindlundh MG, Norlin P, de Curtis M. IEEE Trans Biomed Eng; 2006 Aug; 53(8):1672-7. PubMed ID: 16916102 [Abstract] [Full Text] [Related]
8. Regeneration microelectrode array for peripheral nerve recording and stimulation. Kovacs GT, Storment CW, Rosen JM. IEEE Trans Biomed Eng; 1992 Sep; 39(9):893-902. PubMed ID: 1473818 [Abstract] [Full Text] [Related]
10. Toward a comparison of microelectrodes for acute and chronic recordings. Ward MP, Rajdev P, Ellison C, Irazoqui PP. Brain Res; 2009 Jul 28; 1282():183-200. PubMed ID: 19486899 [Abstract] [Full Text] [Related]
11. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. IEEE Trans Neural Syst Rehabil Eng; 2005 Dec 28; 13(4):524-41. PubMed ID: 16425835 [Abstract] [Full Text] [Related]
12. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain. Chen YY, Lai HY, Lin SH, Cho CW, Chao WH, Liao CH, Tsang S, Chen YF, Lin SY. J Neurosci Methods; 2009 Aug 30; 182(1):6-16. PubMed ID: 19467262 [Abstract] [Full Text] [Related]
13. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface. Moxon KA, Kalkhoran NM, Markert M, Sambito MA, McKenzie JL, Webster JT. IEEE Trans Biomed Eng; 2004 Jun 30; 51(6):881-9. PubMed ID: 15188854 [Abstract] [Full Text] [Related]
14. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. Otto KJ, Johnson MD, Kipke DR. IEEE Trans Biomed Eng; 2006 Feb 30; 53(2):333-40. PubMed ID: 16485763 [Abstract] [Full Text] [Related]
15. A single-chip signal processing and telemetry engine for an implantable 96-channel neural data acquisition system. Rizk M, Obeid I, Callender SH, Wolf PD. J Neural Eng; 2007 Sep 30; 4(3):309-21. PubMed ID: 17873433 [Abstract] [Full Text] [Related]