These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biosynthesis of bile acids in cerebrotendinous xanthomatosis. Relationship of bile acid pool sizes and synthesis rates to hydroxylations at C-12, C-25, and C-26. Salen G, Shefer S, Tint GS, Nicolau G, Dayal B, Batta AK. J Clin Invest; 1985 Aug; 76(2):744-51. PubMed ID: 4031069 [Abstract] [Full Text] [Related]
3. An in vivo evaluation of the quantitative significance of several potential pathways to cholic and chenodeoxycholic acids from cholesterol in man. Swell L, Gustafsson J, Schwartz CC, Halloran LG, Danielsson H, Vlahcevic ZR. J Lipid Res; 1980 May; 21(4):455-66. PubMed ID: 7381336 [Abstract] [Full Text] [Related]
4. Transformation of 4-cholesten-3-one and 7 alpha-hydroxy-4-cholesten-3-one into cholestanol and bile acids in cerebrotendinous xanthomatosis. Salen G, Shefer S, Tint GS. Gastroenterology; 1984 Aug; 87(2):276-83. PubMed ID: 6735073 [Abstract] [Full Text] [Related]
5. Quantitative aspects of the conversion of 5 beta-cholestane intermediates to bile acids in man. Schwartz CC, Cohen BI, Vlahcevic ZR, Gregory DH, Halloran LG, Kuramoto T, Mosbach EH, Swell L. J Biol Chem; 1976 Oct 25; 251(20):6308-14. PubMed ID: 185209 [Abstract] [Full Text] [Related]
6. Conversion of 7 alpha-hydroxycholesterol to bile acid in human subjects: is there an alternate pathway favoring cholic acid synthesis? Duane WC, Javitt NB. J Lab Clin Med; 2002 Feb 25; 139(2):109-15. PubMed ID: 11919549 [Abstract] [Full Text] [Related]
7. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis. Princen HM, Meijer P, Wolthers BG, Vonk RJ, Kuipers F. Biochem J; 1991 Apr 15; 275 ( Pt 2)(Pt 2):501-5. PubMed ID: 2025228 [Abstract] [Full Text] [Related]
8. Bile acid metabolism in cirrhosis. VIII. Quantitative evaluation of bile acid synthesis from [7 beta-3H]7 alpha-hydroxycholesterol and [G-3H]26-hydroxycholesterol. Goldman M, Vlahcevic ZR, Schwartz CC, Gustafsson J, Swell L. Hepatology; 1982 Apr 15; 2(1):59-66. PubMed ID: 7054068 [Abstract] [Full Text] [Related]
9. Cholesterol and bile acid synthesis in Hep G2 cells. Metabolic effects of 26- and 7 alpha-hydroxycholesterol. Javitt NB, Budai K. Biochem J; 1989 Sep 15; 262(3):989-92. PubMed ID: 2556116 [Abstract] [Full Text] [Related]
11. Bile acid synthesis in primary cultures of rat and human hepatocytes. Ellis E, Goodwin B, Abrahamsson A, Liddle C, Mode A, Rudling M, Bjorkhem I, Einarsson C. Hepatology; 1998 Feb 15; 27(2):615-20. PubMed ID: 9462665 [Abstract] [Full Text] [Related]
12. Formation of cholic acid and chenodeoxycholic acid from 7 alpha-hydroxycholesterol and 27-hydroxycholesterol by primary cultures of human hepatocytes. Sauter G, Fischer S, Pahernik S, Koebe HG, Paumgartner G. Biochim Biophys Acta; 1996 Mar 29; 1300(1):25-9. PubMed ID: 8608157 [Abstract] [Full Text] [Related]
13. Bile acid therapies applied to patients suffering from cerebrotendinous xanthomatosis. Koopman BJ, Wolthers BG, van der Molen JC, Waterreus RJ. Clin Chim Acta; 1985 Oct 31; 152(1-2):115-22. PubMed ID: 4053393 [Abstract] [Full Text] [Related]
14. Selective inhibition of mitochondrial 27-hydroxylation of bile acid intermediates and 25-hydroxylation of vitamin D3 by cyclosporin A. Dahlbäck-Sjöberg H, Björkhem I, Princen HM. Biochem J; 1993 Jul 01; 293 ( Pt 1)(Pt 1):203-6. PubMed ID: 8392332 [Abstract] [Full Text] [Related]
15. Role of the 26-hydroxylase in the biosynthesis of bile acids in the normal state and in cerebrotendinous xanthomatosis. An in vivo study. Björkhem I, Fausa O, Hopen G, Oftebro H, Pedersen JI, Skrede S. J Clin Invest; 1983 Jan 01; 71(1):142-8. PubMed ID: 6848555 [Abstract] [Full Text] [Related]
16. Bile acid synthesis in cultured human hepatoblastoma cells. Axelson M, Mörk B, Everson GT. J Biol Chem; 1991 Sep 25; 266(27):17770-7. PubMed ID: 1655725 [Abstract] [Full Text] [Related]
17. Bile acid metabolism in cirrhosis. VII. Evidence for defective feedback control of bile acid synthesis. Vlahcevic ZR, Goldman M, Schwartz CC, Gustafsson J, Swell L. Hepatology; 1981 Sep 25; 1(2):146-50. PubMed ID: 7286894 [Abstract] [Full Text] [Related]
18. Gas chromatography-mass spectrometry of isobutyl ester trimethylsilyl ether derivatives of bile acids and application to the study of bile sterol and bile acid biosynthesis in rat liver epithelial cell lines. Tsaconas C, Padieu P, Maume G, Chessebeuf M, Hussein N, Pitoizet N. Anal Biochem; 1986 Sep 25; 157(2):300-15. PubMed ID: 3777434 [Abstract] [Full Text] [Related]
19. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Clayton PT, Casteels M, Mieli-Vergani G, Lawson AM. Pediatr Res; 1995 Apr 25; 37(4 Pt 1):424-31. PubMed ID: 7596681 [Abstract] [Full Text] [Related]
20. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid. Kase BF, Pedersen JI, Strandvik B, Björkhem I. J Clin Invest; 1985 Dec 25; 76(6):2393-402. PubMed ID: 4077985 [Abstract] [Full Text] [Related] Page: [Next] [New Search]