These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
169 related items for PubMed ID: 7853393
41. Replacement of Asp-162 by Ala prevents the cooperative transition by the substrates while enhancing the effect of the allosteric activator ATP on E. coli aspartate transcarbamoylase. Fetler L, Tauc P, Baker DP, Macol CP, Kantrowitz ER, Vachette P. Protein Sci; 2002 May; 11(5):1074-81. PubMed ID: 11967364 [Abstract] [Full Text] [Related]
42. Involvement of the gamma-phosphate of UTP in the synergistic inhibition of Escherichia coli aspartate transcarbamylase by CTP and UTP. England P, Hervé G. Biochemistry; 1994 Apr 05; 33(13):3913-8. PubMed ID: 8142394 [Abstract] [Full Text] [Related]
43. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP, Fetler L, Vachette P, Kantrowitz ER. Protein Sci; 1996 Nov 05; 5(11):2276-86. PubMed ID: 8931146 [Abstract] [Full Text] [Related]
44. Structural consequences of the replacement of Glu239 by Gln in the catalytic chain of Escherichia coli aspartate transcarbamylase. Tauc P, Vachette P, Middleton SA, Kantrowitz ER. J Mol Biol; 1990 Jul 05; 214(1):327-35. PubMed ID: 1973463 [Abstract] [Full Text] [Related]
45. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. Suter P, Rosenbusch JP. J Biol Chem; 1977 Nov 25; 252(22):8136-41. PubMed ID: 334776 [Abstract] [Full Text] [Related]
46. Complex of N-phosphonacetyl-L-aspartate with aspartate carbamoyltransferase. X-ray refinement, analysis of conformational changes and catalytic and allosteric mechanisms. Ke HM, Lipscomb WN, Cho YJ, Honzatko RB. J Mol Biol; 1988 Dec 05; 204(3):725-47. PubMed ID: 3066911 [Abstract] [Full Text] [Related]
47. Tryptophan residues at subunit interfaces used as fluorescence probes to investigate homotropic and heterotropic regulation of aspartate transcarbamylase. Fetler L, Tauc P, Hervé G, Cunin R, Brochon JC. Biochemistry; 2001 Jul 31; 40(30):8773-82. PubMed ID: 11467937 [Abstract] [Full Text] [Related]
48. The use of alanine scanning mutagenesis to determine the role of the N-terminus of the regulatory chain in the heterotropic mechanism of Escherichia coli aspartate transcarbamoylase. Dembowski NJ, Kantrowitz ER. Protein Eng; 1994 May 31; 7(5):673-9. PubMed ID: 8073037 [Abstract] [Full Text] [Related]
49. Allosteric signal transmission involves synergy between discrete structural units of the regulatory subunit of aspartate transcarbamoylase. Liu L, Wales ME, Wild JR. Arch Biochem Biophys; 2000 Jan 15; 373(2):352-60. PubMed ID: 10620359 [Abstract] [Full Text] [Related]
50. A single mutation in the regulatory chain of Escherichia coli aspartate transcarbamoylase results in an extreme T-state structure. Williams MK, Stec B, Kantrowitz ER. J Mol Biol; 1998 Aug 07; 281(1):121-34. PubMed ID: 9680480 [Abstract] [Full Text] [Related]
51. Long range effects of amino acid substitutions in the catalytic chain of aspartate transcarbamoylase. Localized replacements in the carboxyl-terminal alpha-helix cause marked alterations in allosteric properties and intersubunit interactions. Peterson CB, Schachman HK. J Biol Chem; 1992 Feb 05; 267(4):2443-50. PubMed ID: 1733944 [Abstract] [Full Text] [Related]
52. Effects of ATP and CTP on the conformation of the regulatory subunit of Escherichia coli aspartate transcarbamylase in solution: a medium-resolution hydrogen exchange study. Mallikarachchi D, Burz DS, Allewell NM. Biochemistry; 1989 Jun 27; 28(13):5386-91. PubMed ID: 2673345 [Abstract] [Full Text] [Related]
53. Importance of residues Arg-167 and Gln-231 in both the allosteric and catalytic mechanisms of Escherichia coli aspartate transcarbamoylase. Stebbins JW, Zhang Y, Kantrowitz ER. Biochemistry; 1990 Apr 24; 29(16):3821-7. PubMed ID: 2191720 [Abstract] [Full Text] [Related]
54. Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi: thermostability and 1.8A resolution crystal structure of the catalytic subunit complexed with the bisubstrate analogue N-phosphonacetyl-L-aspartate. Van Boxstael S, Cunin R, Khan S, Maes D. J Mol Biol; 2003 Feb 07; 326(1):203-16. PubMed ID: 12547202 [Abstract] [Full Text] [Related]
55. Crystal structures of aspartate carbamoyltransferase ligated with phosphonoacetamide, malonate, and CTP or ATP at 2.8-A resolution and neutral pH. Gouaux JE, Stevens RC, Lipscomb WN. Biochemistry; 1990 Aug 21; 29(33):7702-15. PubMed ID: 2271529 [Abstract] [Full Text] [Related]
56. Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase. Yuan X, LiCata VJ, Allewell NM. J Biol Chem; 1996 Jan 19; 271(3):1285-94. PubMed ID: 8576114 [Abstract] [Full Text] [Related]
57. A second allosteric site in Escherichia coli aspartate transcarbamoylase. Peterson AW, Cockrell GM, Kantrowitz ER. Biochemistry; 2012 Jun 19; 51(24):4776-8. PubMed ID: 22667327 [Abstract] [Full Text] [Related]
58. Application of methyl-TROSY NMR to test allosteric models describing effects of nucleotide binding to aspartate transcarbamoylase. Velyvis A, Schachman HK, Kay LE. J Mol Biol; 2009 Apr 03; 387(3):540-7. PubMed ID: 19302799 [Abstract] [Full Text] [Related]
59. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS, Schachman HK. J Biol Chem; 1986 Mar 05; 261(7):3079-84. PubMed ID: 3512547 [Abstract] [Full Text] [Related]
60. Effectors of Escherichia coli aspartate transcarbamoylase differentially perturb aspartate binding rather than the T-R transition. Hsuanyu YC, Wedler FC. J Biol Chem; 1988 Mar 25; 263(9):4172-81. PubMed ID: 3279030 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]