These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 7854204

  • 41. Up-regulation of vascular endothelial growth factor and down-regulation of pigment epithelium-derived factor messenger ribonucleic acid levels in leptin-exposed cultured retinal pericytes.
    Yamagishi S, Inagaki Y, Amano S, Okamoto T, Takeuchi M.
    Int J Tissue React; 2002; 24(4):137-42. PubMed ID: 12779248
    [Abstract] [Full Text] [Related]

  • 42. The angiopoietin/Tie-2 system regulates pericyte survival and recruitment in diabetic retinopathy.
    Cai J, Kehoe O, Smith GM, Hykin P, Boulton ME.
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2163-71. PubMed ID: 18436850
    [Abstract] [Full Text] [Related]

  • 43. Novel function of ascorbic acid as an angiostatic factor.
    Ashino H, Shimamura M, Nakajima H, Dombou M, Kawanaka S, Oikawa T, Iwaguchi T, Kawashima S.
    Angiogenesis; 2003 May; 6(4):259-69. PubMed ID: 15166494
    [Abstract] [Full Text] [Related]

  • 44. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells.
    Chao CL, Hou YC, Chao PD, Weng CS, Ho FM.
    Br J Nutr; 2009 Apr; 101(8):1165-70. PubMed ID: 19007452
    [Abstract] [Full Text] [Related]

  • 45. [Heparan sulfate proteoglycan of endothelial cells: homocysteine suppresses anticoagulant active heparan sulfate in cultured endothelial cells].
    Nishinaga M, Shimada K.
    Rinsho Byori; 1994 Apr; 42(4):340-5. PubMed ID: 8176841
    [Abstract] [Full Text] [Related]

  • 46. High glucose-induced alterations in subendothelial matrix perlecan leads to increased monocyte binding.
    Vogl-Willis CA, Edwards IJ.
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):858-63. PubMed ID: 15031130
    [Abstract] [Full Text] [Related]

  • 47. Endothelin 1 mediates endothelial cell-dependent proliferation of vascular pericytes.
    Yamagishi S, Hsu CC, Kobayashi K, Yamamoto H.
    Biochem Biophys Res Commun; 1993 Mar 31; 191(3):840-6. PubMed ID: 8466522
    [Abstract] [Full Text] [Related]

  • 48. Angiotensin II-type 1 receptor interaction upregulates vascular endothelial growth factor messenger RNA levels in retinal pericytes through intracellular reactive oxygen species generation.
    Yamagishi S, Amano S, Inagaki Y, Okamoto T, Inoue H, Takeuchi M, Choei H, Sasaki N, Kikuchi S.
    Drugs Exp Clin Res; 2003 Mar 31; 29(2):75-80. PubMed ID: 12951837
    [Abstract] [Full Text] [Related]

  • 49. [Growth characteristics of bovine retinal pericytes in culture].
    Hahn B, Knorr M, Wunderlich K, Dartsch PC.
    Ophthalmologe; 1994 Jun 31; 91(3):368-72. PubMed ID: 8086755
    [Abstract] [Full Text] [Related]

  • 50. Proteoglycan synthesis by bovine myocardial endothelial cells is increased by long-term exposure to high concentrations of glucose.
    Klein DJ, Cohen RM, Rymaszewski Z.
    J Cell Physiol; 1995 Dec 31; 165(3):493-502. PubMed ID: 7593228
    [Abstract] [Full Text] [Related]

  • 51. Intramural pericyte degeneration in early diabetic retinopathy study in vitro.
    Li WY, Zhou Q, Tang L, Qin M, Hu TS.
    Chin Med J (Engl); 1990 Jan 31; 103(1):7-13. PubMed ID: 2112447
    [Abstract] [Full Text] [Related]

  • 52. Regulation of glucose transporter (GLUT 3) and aldose reductase mRNA inbovine retinal endothelial cells and retinal pericytes in high glucose and high galactose culture.
    Knott RM, Robertson M, Forrester JV.
    Diabetologia; 1993 Sep 31; 36(9):808-12. PubMed ID: 8405751
    [Abstract] [Full Text] [Related]

  • 53. Aldose reductase activity in retinal and cerebral microvessels and cultured vascular cells.
    Kennedy A, Frank RN, Varma SD.
    Invest Ophthalmol Vis Sci; 1983 Sep 31; 24(9):1250-8. PubMed ID: 6411648
    [Abstract] [Full Text] [Related]

  • 54. The effects of high ambient glucose on the radiosensitivity of retinal microvascular endothelial cells and pericytes.
    Patton W, Gillespie H, Frew L, Burns M, Lewis S, Chakravarthy U.
    Curr Eye Res; 2002 Jan 31; 24(1):51-7. PubMed ID: 12187495
    [Abstract] [Full Text] [Related]

  • 55. [The biochemical mechanism in vitro of pericyte drop-out in diabetic retinopathy].
    Li WY.
    Zhonghua Yan Ke Za Zhi; 1989 Jul 31; 25(4):222-6. PubMed ID: 2620620
    [Abstract] [Full Text] [Related]

  • 56. Differential kinetics of glucose metabolism in porcine retinal and aortic endothelial cells.
    Olgemöller B, Schleicher ED, Gerbitz KD.
    J Clin Chem Clin Biochem; 1990 Jan 31; 28(1):15-7. PubMed ID: 2313231
    [Abstract] [Full Text] [Related]

  • 57. Retinal vascular endothelial cells and pericytes. Differential growth characteristics in vitro.
    Buzney SM, Massicotte SJ, Hetu N, Zetter BR.
    Invest Ophthalmol Vis Sci; 1983 Apr 31; 24(4):470-80. PubMed ID: 6299992
    [Abstract] [Full Text] [Related]

  • 58. Protein kinase C-mediated insulin receptor phosphorylation in diabetic rat retina.
    Kida T, Oku H, Horie T, Osuka S, Fukumoto M, Ikeda T.
    Graefes Arch Clin Exp Ophthalmol; 2019 Jul 31; 257(7):1427-1434. PubMed ID: 31025213
    [Abstract] [Full Text] [Related]

  • 59. Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro.
    Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR.
    Exp Eye Res; 1993 Nov 31; 57(5):609-21. PubMed ID: 8282048
    [Abstract] [Full Text] [Related]

  • 60. Effects of ascorbic acid on cultured rabbit corneal endothelial cells.
    Yue BY, Niedra R, Baum JL.
    Invest Ophthalmol Vis Sci; 1980 Dec 31; 19(12):1471-6. PubMed ID: 7002858
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.