These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 785559

  • 1. Receptor function and ion transport in turkey erythrocytes.
    Gardner JD, Aurbach GD, Spiegel AM, Brown EM.
    Recent Prog Horm Res; 1976; 32():567-95. PubMed ID: 785559
    [No Abstract] [Full Text] [Related]

  • 2. Modulation of beta-adrenergic agonist binding by guanylnucleotides in avian erythrocytes.
    Simpson IA, Pfeuffer T.
    FEBS Lett; 1980 Jun 16; 115(1):113-7. PubMed ID: 6248374
    [No Abstract] [Full Text] [Related]

  • 3. Binding of 5'-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effects on beta-adrenergic-activated adenylate cyclase.
    Spiegel AM, Aurbach GD.
    J Biol Chem; 1974 Dec 10; 249(23):7630-6. PubMed ID: 4436329
    [No Abstract] [Full Text] [Related]

  • 4. Beta-adrenergic receptors, cyclic AMP, and ion transport in the avian erythrocyte.
    Aurbach GD, Spiegel AM, Gardner JD.
    Adv Cyclic Nucleotide Res; 1975 Dec 10; 5():117-32. PubMed ID: 165661
    [Abstract] [Full Text] [Related]

  • 5. Independent variation of beta-adrenergic receptor binding and catecholamine-stimulated adenylate cyclase activity in rat erythrocytes.
    Charness ME, Bylund DB, Beckman BS, Hollenberg MD, Snyder SH.
    Life Sci; 1976 Jul 15; 19(2):243-9. PubMed ID: 957867
    [No Abstract] [Full Text] [Related]

  • 6. The effects of nucleotides on the expression of beta-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes.
    Bilezikian JP, Aurbach GD.
    J Biol Chem; 1974 Jan 10; 249(1):157-61. PubMed ID: 4809625
    [No Abstract] [Full Text] [Related]

  • 7. Mechanisms altered beta-adrenergic responsiveness in the hyperthyroid and hypothyroid turkey erythrocyte.
    Bilezikian JP, Loeb JN.
    Life Sci; 1974 Jan 10; 30(7-8):663-73. PubMed ID: 6280011
    [Abstract] [Full Text] [Related]

  • 8. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ, Lefkowitz RJ.
    J Biol Chem; 1981 Mar 10; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract] [Full Text] [Related]

  • 9. Age-related parallel decline in beta-adrenergic receptors, adenylate cyclase and phosphodiesterase activity in rat erythrocyte membranes.
    Bylund DB, Tellez-Iñon MT, Hollenberg MD.
    Life Sci; 1977 Aug 01; 21(3):403-10. PubMed ID: 197363
    [No Abstract] [Full Text] [Related]

  • 10. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A.
    FEBS Lett; 1980 Jun 16; 115(1):9-10. PubMed ID: 6248377
    [No Abstract] [Full Text] [Related]

  • 11. Beta-adrenergic receptors and isoproterenol-stimulated potassium transport in erythrocytes from normal and hypothyroid turkeys. Quantitative relation between receptor occupancy and physiologic responsiveness.
    Furukawa H, Loeb JN, Bilezikian JP.
    J Clin Invest; 1980 Nov 16; 66(5):1057-64. PubMed ID: 6253521
    [Abstract] [Full Text] [Related]

  • 12. II. Beta-adrenergic receptors and catecholamine sensitive adenylate cyclase in the developing rat lung.
    Whitsett JA, Manton MA, Darovec-Beckerman C, Adams K.
    Life Sci; 1981 Jan 26; 28(4):339-45. PubMed ID: 6261061
    [No Abstract] [Full Text] [Related]

  • 13. beta-Adrenergic and muscarinic receptors in developing rat parotid glands. Selective effect of neonatal sympathetic denervation.
    Ludford JM, Talamo BR.
    J Biol Chem; 1980 May 25; 255(10):4619-27. PubMed ID: 6154694
    [No Abstract] [Full Text] [Related]

  • 14. Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high affinity site.
    Aurbach GD, Fedak SA, Woodard CJ, Palmer JS, Hauser D, Troxler F.
    Science; 1974 Dec 27; 186(4170):1223-4. PubMed ID: 4154497
    [Abstract] [Full Text] [Related]

  • 15. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM, Lefkowitz RJ.
    Biochemistry; 1980 Sep 16; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract] [Full Text] [Related]

  • 16. Stereospecific (3H)(minus)-alprenolol binding sites, beta-adrenergic receptors and adenylate cyclase.
    Lefkowitz RJ, Mukherjee C, Coverstone M, Caron MG.
    Biochem Biophys Res Commun; 1974 Sep 23; 60(2):703-9. PubMed ID: 4370935
    [No Abstract] [Full Text] [Related]

  • 17. Structure of the turkey erythrocyte adenylate cyclase system.
    Nielsen TB, Lad PM, Preston MS, Kempner E, Schlegel W, Rodbell M.
    Proc Natl Acad Sci U S A; 1981 Feb 23; 78(2):722-6. PubMed ID: 6262765
    [Abstract] [Full Text] [Related]

  • 18. Slow GDP dissociation from the guanyl nucleotide-binding site of turkey erythrocyte membranes as the limiting step in the activation of adenylate cyclase by beta-adrenergic agonists.
    Swillens S, Juvent M, Dumont JE.
    FEBS Lett; 1979 Dec 15; 108(2):365-8. PubMed ID: 230088
    [No Abstract] [Full Text] [Related]

  • 19. Regulation of adenylate cyclase activity by hormone-induced displacement of guanine nucleotides.
    Cassel D.
    Biochem Soc Trans; 1981 Feb 15; 9(1):39-40. PubMed ID: 7215657
    [No Abstract] [Full Text] [Related]

  • 20. A beta-adrenergic receptor of the turkey erythrocyte. I. Binding of catecholamine and relationship to adenylate cyclase activity.
    Bilezikian JP, Aurbach GD.
    J Biol Chem; 1973 Aug 25; 248(16):5577-83. PubMed ID: 4146752
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.