These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 7860667

  • 21. Blood-brain barrier mechanisms involved in brain calcium and potassium homeostasis.
    Keep RF, Ulanski LJ, Xiang J, Ennis SR, Lorris Betz A.
    Brain Res; 1999 Jan 09; 815(2):200-5. PubMed ID: 9878735
    [Abstract] [Full Text] [Related]

  • 22. The effects of hypo- and hyperkalemia on choroid plexus potassium transport.
    Klarr SA, Ulanski LJ, Stummer W, Xiang J, Betz AL, Keep RF.
    Brain Res; 1997 May 30; 758(1-2):39-44. PubMed ID: 9203531
    [Abstract] [Full Text] [Related]

  • 23. Potassium transport at the blood-brain and blood-CSF barriers.
    Keep RF, Xiang J, Betz AL.
    Adv Exp Med Biol; 1993 May 30; 331():43-54. PubMed ID: 8392782
    [Abstract] [Full Text] [Related]

  • 24. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia.
    Holliday MA, Kalayci MN, Harrah J.
    J Clin Invest; 1968 Aug 30; 47(8):1916-28. PubMed ID: 5666118
    [Abstract] [Full Text] [Related]

  • 25. Cerebrovascular permeability coefficients to sodium, potassium, and chloride.
    Smith QR, Rapoport SI.
    J Neurochem; 1986 Jun 30; 46(6):1732-42. PubMed ID: 3084708
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. CNS control of active sodium transport in muscle during progressive hypokalemia in the rat.
    Akaike N.
    Brain Res; 1982 May 13; 239(2):575-81. PubMed ID: 6284307
    [Abstract] [Full Text] [Related]

  • 29. Potassium homeostasis and glial energy metabolism.
    Amédée T, Robert A, Coles JA.
    Glia; 1997 Sep 13; 21(1):46-55. PubMed ID: 9298846
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality.
    Cserr HF, DePasquale M, Patlak CS.
    Am J Physiol; 1987 Sep 13; 253(3 Pt 2):F530-7. PubMed ID: 3115116
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Hyperkalaemia in a Thai man.
    Smit WJ.
    Lancet; 1999 Oct 02; 354(9185):1182. PubMed ID: 10513721
    [Abstract] [Full Text] [Related]

  • 38. Do brain fluid ion concentrations change in hydrocephalus? A study on potassium and calcium in rats with congenital hydrocephalus.
    Keep RF, Jones HC.
    J Neurol Sci; 1989 Jun 02; 91(1-2):119-28. PubMed ID: 2746286
    [Abstract] [Full Text] [Related]

  • 39. Creatinine, potassium, and calcium flux from chicken cerebrospinal fluid.
    Anderson DK, Heisey SR.
    Am J Physiol; 1975 Feb 02; 228(2):415-9. PubMed ID: 1119565
    [Abstract] [Full Text] [Related]

  • 40. Differences between CSF and plasma Na+ and K+ activities and concentrations.
    Johnson DC, Orlowitz L, Hitzig BM.
    Am J Physiol; 1985 May 02; 248(5 Pt 2):R621-6. PubMed ID: 3993818
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.