These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


527 related items for PubMed ID: 7864650

  • 1. Hydroxyl radical generation during mitochondrial electron transfer and the formation of 8-hydroxydesoxyguanosine in mitochondrial DNA.
    Giulivi C, Boveris A, Cadenas E.
    Arch Biochem Biophys; 1995 Feb 01; 316(2):909-16. PubMed ID: 7864650
    [Abstract] [Full Text] [Related]

  • 2. Alkoxyl and methyl radical formation during cleavage of tert-butyl hydroperoxide by a mitochondrial membrane-bound, redox active copper pool: an EPR study.
    Massa EM, Giulivi C.
    Free Radic Biol Med; 1993 May 01; 14(5):559-65. PubMed ID: 8394271
    [Abstract] [Full Text] [Related]

  • 3. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE, Roeder TL, Buettner GR.
    Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450
    [Abstract] [Full Text] [Related]

  • 4. Identification of mitochondrial electron transport chain-mediated NADH radical formation by EPR spin-trapping techniques.
    Matsuzaki S, Kotake Y, Humphries KM.
    Biochemistry; 2011 Dec 20; 50(50):10792-803. PubMed ID: 22091587
    [Abstract] [Full Text] [Related]

  • 5. Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical.
    Doroshow JH, Davies KJ.
    J Biol Chem; 1986 Mar 05; 261(7):3068-74. PubMed ID: 3005279
    [Abstract] [Full Text] [Related]

  • 6. Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport.
    Sanders SP, Zweier JL, Kuppusamy P, Harrison SJ, Bassett DJ, Gabrielson EW, Sylvester JT.
    J Clin Invest; 1993 Jan 05; 91(1):46-52. PubMed ID: 8380815
    [Abstract] [Full Text] [Related]

  • 7. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.
    Yim MB, Chock PB, Stadtman ER.
    Proc Natl Acad Sci U S A; 1990 Jul 05; 87(13):5006-10. PubMed ID: 2164216
    [Abstract] [Full Text] [Related]

  • 8. Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study.
    Zhu BZ, Zhao HT, Kalyanaraman B, Frei B.
    Free Radic Biol Med; 2002 Mar 01; 32(5):465-73. PubMed ID: 11864786
    [Abstract] [Full Text] [Related]

  • 9. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation.
    Thomas C, Mackey MM, Diaz AA, Cox DP.
    Redox Rep; 2009 Mar 01; 14(3):102-8. PubMed ID: 19490751
    [Abstract] [Full Text] [Related]

  • 10. The metabolism of tyramine by monoamine oxidase A/B causes oxidative damage to mitochondrial DNA.
    Hauptmann N, Grimsby J, Shih JC, Cadenas E.
    Arch Biochem Biophys; 1996 Nov 15; 335(2):295-304. PubMed ID: 8914926
    [Abstract] [Full Text] [Related]

  • 11. Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles.
    Partridge RS, Monroe SM, Parks JK, Johnson K, Parker WD, Eaton GR, Eaton SS.
    Arch Biochem Biophys; 1994 Apr 15; 310(1):210-7. PubMed ID: 8161207
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyl radical scavenging action of capsaicin.
    Okada Y, Okajima H, Shima Y, Ohta H.
    Redox Rep; 2002 Apr 15; 7(3):153-7. PubMed ID: 12189045
    [Abstract] [Full Text] [Related]

  • 13. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles.
    Pryor WA, Arbour NC, Upham B, Church DF.
    Free Radic Biol Med; 1992 Apr 15; 12(5):365-72. PubMed ID: 1317324
    [Abstract] [Full Text] [Related]

  • 14. Comparative study of the formation of oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) adduct from the nucleoside 2'-deoxyguanosine by transition metals and suspensions of particulate matter in relation to metal content and redox reactivity.
    Valavanidis A, Vlahoyianni T, Fiotakis K.
    Free Radic Res; 2005 Oct 15; 39(10):1071-81. PubMed ID: 16298732
    [Abstract] [Full Text] [Related]

  • 15. H2O2-driven reduction of the Fe3+-quin2 chelate and the subsequent formation of oxidizing species.
    Sandström BE, Svoboda P, Granström M, Harms-Ringdahl M, Candeias LP.
    Free Radic Biol Med; 1997 Oct 15; 23(5):744-53. PubMed ID: 9296451
    [Abstract] [Full Text] [Related]

  • 16. Production of hydroxyl-free radical by reaction of hydrogen peroxide with N-methyl-N'-nitro-N-nitrosoguanidine.
    Mikuni T, Tatsuta M, Kamachi M.
    Cancer Res; 1985 Dec 15; 45(12 Pt 1):6442-5. PubMed ID: 2998601
    [Abstract] [Full Text] [Related]

  • 17. Copper redox-dependent activation of 2-tert-butyl(1,4)hydroquinone: formation of reactive oxygen species and induction of oxidative DNA damage in isolated DNA and cultured rat hepatocytes.
    Li Y, Seacat A, Kuppusamy P, Zweier JL, Yager JD, Trush MA.
    Mutat Res; 2002 Jul 25; 518(2):123-33. PubMed ID: 12113763
    [Abstract] [Full Text] [Related]

  • 18. Solvent effects in the spin trapping of lipid oxyl radicals.
    Schaich KM, Borg DC.
    Free Radic Res Commun; 1990 Jul 25; 9(3-6):267-78. PubMed ID: 2167265
    [Abstract] [Full Text] [Related]

  • 19. Reaction of vanadyl with hydrogen peroxide. An ESR and spin trapping study.
    Carmichael AJ.
    Free Radic Res Commun; 1990 Jul 25; 10(1-2):37-45. PubMed ID: 2165984
    [Abstract] [Full Text] [Related]

  • 20. MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes.
    Adams JD, Klaidman LK, Leung AC.
    Free Radic Biol Med; 1993 Aug 25; 15(2):181-6. PubMed ID: 8397143
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.