These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
214 related items for PubMed ID: 7864826
1. Reversal of the Ca2+ pump of blood platelets. Benech JC, Wolosker H, de Meis L. Biochem J; 1995 Feb 15; 306 ( Pt 1)(Pt 1):35-8. PubMed ID: 7864826 [Abstract] [Full Text] [Related]
2. Ethanol has different effects on Ca(2+)-transport ATPases of muscle, brain and blood platelets. Mitidieri F, de Meis L. Biochem J; 1995 Dec 15; 312 ( Pt 3)(Pt 3):733-7. PubMed ID: 8554513 [Abstract] [Full Text] [Related]
3. The Ca(2+)-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca(2+)-ATPase. Engelender S, Wolosker H, de Meis L. J Biol Chem; 1995 Sep 08; 270(36):21050-5. PubMed ID: 7673132 [Abstract] [Full Text] [Related]
5. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. Sagara Y, Inesi G. J Biol Chem; 1991 Jul 25; 266(21):13503-6. PubMed ID: 1830305 [Abstract] [Full Text] [Related]
8. Roles of phospholipase C and Ca(2+)-ATPase in calcium responses of single, fibrinogen-bound platelets. Heemskerk JW, Vis P, Feijge MA, Hoyland J, Mason WT, Sage SO. J Biol Chem; 1993 Jan 05; 268(1):356-63. PubMed ID: 8416943 [Abstract] [Full Text] [Related]
10. Calcium efflux from platelet vesicles of the dense tubular system. Analysis of the possible contribution of the Ca2+ pump. Teijeiro RG, Sotelo Silveira JR, Sotelo JR, Benech JC. Mol Cell Biochem; 1999 Sep 05; 199(1-2):7-14. PubMed ID: 10544946 [Abstract] [Full Text] [Related]
11. Calcium pool size modulates the sensitivity of the ryanodine receptor channel and calcium-dependent ATPase of heavy sarcoplasmic reticulum to extravesicular free calcium concentration. Marie V, Silva JE. J Cell Physiol; 1998 Jun 05; 175(3):283-94. PubMed ID: 9572473 [Abstract] [Full Text] [Related]
12. Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin. Wictome M, Henderson I, Lee AG, East JM. Biochem J; 1992 Apr 15; 283 ( Pt 2)(Pt 2):525-9. PubMed ID: 1533513 [Abstract] [Full Text] [Related]
15. Mechanism of thermal uncoupling of Ca2+-ATPase of sarcoplasmic reticulum as revealed by thapsigargin stabilization. Davidson GA, Berman MC. Biochim Biophys Acta; 1996 Mar 15; 1289(2):187-94. PubMed ID: 8600972 [Abstract] [Full Text] [Related]
16. Ca2+ effluxes from the sarcoplasmic reticulum vesicles of frog muscle: effects of cyclopiazonic acid and thapsigargin. Du GG, Ashley CC, Lea TJ. Cell Calcium; 1996 Oct 15; 20(4):355-9. PubMed ID: 8939355 [Abstract] [Full Text] [Related]
17. Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis. de Meis L. Biosci Rep; 2001 Apr 15; 21(2):113-37. PubMed ID: 11725862 [Abstract] [Full Text] [Related]
18. An investigation of functional similarities between the sarcoplasmic reticulum and platelet calcium-dependent adenosinetriphosphatases with the inhibitors quercetin and calmidazolium. Fischer TH, Campbell KP, White GC. Biochemistry; 1987 Dec 01; 26(24):8024-30. PubMed ID: 2962642 [Abstract] [Full Text] [Related]
19. Ca2+ binding to sarcoplasmic reticulum ATPase phosphorylated by Pi reveals four thapsigargin-sensitive Ca2+ sites in the presence of ADP. Vieyra A, Mintz E, Lowe J, Guillain F. Biochim Biophys Acta; 2004 Dec 15; 1667(2):103-13. PubMed ID: 15581845 [Abstract] [Full Text] [Related]