These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 7874905

  • 1. In vivo effects of prostacyclin on segmental vascular resistances, on myogenic reactivity, and on capillary fluid exchange in cat skeletal muscle.
    Jahr J, Ekelund U, Grände PO.
    Crit Care Med; 1995 Mar; 23(3):523-31. PubMed ID: 7874905
    [Abstract] [Full Text] [Related]

  • 2. Prostacyclin counteracts the increase in capillary permeability induced by tumour necrosis factor-alpha.
    Jahr J, Grände PO.
    Intensive Care Med; 1996 Dec; 22(12):1453-60. PubMed ID: 8986503
    [Abstract] [Full Text] [Related]

  • 3. Peripheral circulatory effects of pump perfusion on cat skeletal muscle with and without prostacyclin.
    Jahr J, Grände PO.
    Acta Physiol Scand; 1997 Feb; 159(2):93-100. PubMed ID: 9055935
    [Abstract] [Full Text] [Related]

  • 4. Low-dose prostacyclin is superior to terbutaline and aminophylline in reducing capillary permeability in cat skeletal muscle in vivo.
    Möller AD, Grände PO.
    Crit Care Med; 1999 Jan; 27(1):130-6. PubMed ID: 9934906
    [Abstract] [Full Text] [Related]

  • 5. Low-dose prostacyclin has potent capillary permeability-reducing effect in cat skeletal muscle in vivo.
    Möller AD, Grände PO.
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H200-7. PubMed ID: 9249491
    [Abstract] [Full Text] [Related]

  • 6. The capillary filtration coefficient for evaluation of capillary fluid permeability in cat calf muscles.
    Kongstad L, Grände PO.
    Acta Physiol Scand; 1998 Oct; 164(2):201-11. PubMed ID: 9805107
    [Abstract] [Full Text] [Related]

  • 7. Autoregulation of capillary pressure and filtration in cat skeletal muscle in states of normal and reduced vascular tone.
    Mellander S, Maspers M, Björnberg J, Andersson LO.
    Acta Physiol Scand; 1987 Mar; 129(3):337-51. PubMed ID: 2883809
    [Abstract] [Full Text] [Related]

  • 8. [Macro- and microhemodynamics and transcapillary fluid exchange in skeletal muscle and the intestines after intra-arterial injection of obsidan and corinfar].
    Kostko SZ, Shil'krut BL, Stepanova TG.
    Fiziol Zh SSSR Im I M Sechenova; 1986 Sep; 72(9):1310-8. PubMed ID: 3781060
    [Abstract] [Full Text] [Related]

  • 9. Effects of glyceryl trinitrate, nitroprusside and nitric oxide on arterial, venous and capillary functions in cat skeletal muscle in vivo.
    Ekelund U.
    Acta Physiol Scand; 1994 Sep; 152(1):93-105. PubMed ID: 7810336
    [Abstract] [Full Text] [Related]

  • 10. In-vivo effects of endothelin-1 and ETA receptor blockade on arterial, venous and capillary functions in skeletal muscle.
    Ekelund U, Albert U, Edvinsson L, Mellander S.
    Acta Physiol Scand; 1993 Jul; 148(3):273-83. PubMed ID: 8213182
    [Abstract] [Full Text] [Related]

  • 11. Effects on capillary fluid permeability and fluid exchange of albumin, dextran, gelatin, and hydroxyethyl starch in cat skeletal muscle.
    Holbeck S, Grände PO.
    Crit Care Med; 2000 Apr; 28(4):1089-95. PubMed ID: 10809288
    [Abstract] [Full Text] [Related]

  • 12. In vivo effects of endothelin-2, endothelin-3 and ETA receptor blockade on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U.
    Acta Physiol Scand; 1994 Jan; 150(1):47-56. PubMed ID: 8135123
    [Abstract] [Full Text] [Related]

  • 13. Effects of thiopental on resistance vessels in cat skeletal muscle.
    Grände PO, Gustafsson D, Lindberg L.
    Intensive Care Med; 1990 Jan; 16(6):399-404. PubMed ID: 2246423
    [Abstract] [Full Text] [Related]

  • 14. Effects of selective ETB-receptor stimulation on arterial, venous and capillary functions in cat skeletal muscle.
    Ekelund U, Adner M, Edvinsson L, Mellander S.
    Br J Pharmacol; 1994 Jul; 112(3):887-94. PubMed ID: 7921617
    [Abstract] [Full Text] [Related]

  • 15. Metabolic control of large-bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise.
    Björnberg J, Maspers M, Mellander S.
    Acta Physiol Scand; 1989 Feb; 135(2):83-94. PubMed ID: 2923003
    [Abstract] [Full Text] [Related]

  • 16. Microvascular mechanisms involved in calcium antagonist edema formation.
    Gustafsson D.
    J Cardiovasc Pharmacol; 1987 Feb; 10 Suppl 1():S121-31. PubMed ID: 2442504
    [Abstract] [Full Text] [Related]

  • 17. Plasma volume expansion and transcapillary fluid exchange in skeletal muscle of albumin, dextran, gelatin, hydroxyethyl starch, and saline after trauma in the cat.
    Persson J, Grände PO.
    Crit Care Med; 2006 Sep; 34(9):2456-62. PubMed ID: 16850004
    [Abstract] [Full Text] [Related]

  • 18. Endothelin-1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat Skeletal muscle.
    Bentzer P, Holbeck S, Grände PO.
    Microvasc Res; 2002 Jan; 63(1):50-60. PubMed ID: 11749072
    [Abstract] [Full Text] [Related]

  • 19. Prostacyclin reduces microvascular fluid conductivity in cat skeletal muscle through opening of ATP-dependent potassium channels.
    Bentzer P, Holbeck S, Grände PO.
    J Vasc Res; 1999 Jan; 36(6):516-23. PubMed ID: 10629428
    [Abstract] [Full Text] [Related]

  • 20. Endotoxin increases both protein and fluid microvascular permeability in cat skeletal muscle.
    Holbeck S, Grände PO.
    Crit Care Med; 2003 Feb; 31(2):560-5. PubMed ID: 12576966
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.