These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 7876551
1. Evidence for the involvement of arginine 462 and the flanking sequence of human C4 beta-chain in mediating C5 binding to the C4b subcomponent of the classical complement pathway C5 convertase. Ebanks RO, Isenman DE. J Immunol; 1995 Mar 15; 154(6):2808-20. PubMed ID: 7876551 [Abstract] [Full Text] [Related]
2. A single arginine to tryptophan interchange at beta-chain residue 458 of human complement component C4 accounts for the defect in classical pathway C5 convertase activity of allotype C4A6. Implications for the location of a C5 binding site in C4. Ebanks RO, Jaikaran AS, Carroll MC, Anderson MJ, Campbell RD, Isenman DE. J Immunol; 1992 May 01; 148(9):2803-11. PubMed ID: 1573269 [Abstract] [Full Text] [Related]
3. The coding sequence of the hemolytically inactive C4A6 allotype of human complement component C4 reveals that a single arginine to tryptophan substitution at beta-chain residue 458 is the likely cause of the defect. Anderson MJ, Milner CM, Cotton RG, Campbell RD. J Immunol; 1992 May 01; 148(9):2795-802. PubMed ID: 1573268 [Abstract] [Full Text] [Related]
4. Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity. Ebanks RO, Isenman DE. Mol Immunol; 1996 Feb 01; 33(3):297-309. PubMed ID: 8649451 [Abstract] [Full Text] [Related]
5. The low C5 convertase activity of the C4A6 allotype of human complement component C4. Kinoshita T, Dodds AW, Law SK, Inoue K. Biochem J; 1989 Aug 01; 261(3):743-8. PubMed ID: 2803239 [Abstract] [Full Text] [Related]
6. Active sites in complement components C5 and C3 identified by proximity to indels in the C3/4/5 protein family. Low PJ, Ai R, Ogata RT. J Immunol; 1999 Jun 01; 162(11):6580-8. PubMed ID: 10352274 [Abstract] [Full Text] [Related]
7. A covalent dimer of complement C4b serves as a subunit of a novel C5 convertase that involves no C3 derivatives. Masaki T, Matsumoto M, Yasuda R, Levine RP, Kitamura H, Seya T. J Immunol; 1991 Aug 01; 147(3):927-32. PubMed ID: 1861081 [Abstract] [Full Text] [Related]
8. Site-directed mutagenesis of the region around Cys-241 of complement component C2. Evidence for a C4b binding site. Horiuchi T, Macon KJ, Engler JA, Volanakis JE. J Immunol; 1991 Jul 15; 147(2):584-9. PubMed ID: 2071895 [Abstract] [Full Text] [Related]
9. Complement component C5: engineering of a mutant that is specifically cleaved by the C4-specific C1s protease. Ogata RT, Low PJ. J Immunol; 1995 Sep 01; 155(5):2642-51. PubMed ID: 7650393 [Abstract] [Full Text] [Related]
10. Amino acid residues 1101-1105 of the isotypic region of human C4B is important to the covalent binding activity of complement component C4. Reilly BD, Levine RP, Skanes VM. J Immunol; 1991 Nov 01; 147(9):3018-23. PubMed ID: 1919003 [Abstract] [Full Text] [Related]
11. Covalent binding of C3b to C4b within the classical complement pathway C5 convertase. Determination of amino acid residues involved in ester linkage formation. Kim YU, Carroll MC, Isenman DE, Nonaka M, Pramoonjago P, Takeda J, Inoue K, Kinoshita T. J Biol Chem; 1992 Feb 25; 267(6):4171-6. PubMed ID: 1740458 [Abstract] [Full Text] [Related]
12. Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. Takata Y, Kinoshita T, Kozono H, Takeda J, Tanaka E, Hong K, Inoue K. J Exp Med; 1987 Jun 01; 165(6):1494-507. PubMed ID: 3495629 [Abstract] [Full Text] [Related]
13. Distal recognition site for classical pathway convertase located in the C345C/netrin module of complement component C5. Sandoval A, Ai R, Ostresh JM, Ogata RT. J Immunol; 2000 Jul 15; 165(2):1066-73. PubMed ID: 10878385 [Abstract] [Full Text] [Related]
14. A cluster of positively charged amino acids in the alpha-chain of C4b-binding protein (C4BP) is pivotal for the regulation of the complement system and the interaction with bacteria. Blom AM. Scand J Clin Lab Invest Suppl; 2000 Jul 15; 233():37-49. PubMed ID: 11317941 [Abstract] [Full Text] [Related]
15. The molecular basis for the difference in immune hemolysis activity of the Chido and Rodgers isotypes of human complement component C4. Isenman DE, Young JR. J Immunol; 1984 Jun 15; 132(6):3019-27. PubMed ID: 6609966 [Abstract] [Full Text] [Related]
16. Hemolytically inactive C4B complement allotype caused by a proline to leucine mutation in the C5-binding site. McLean RH, Niblack G, Julian B, Wang T, Wyatt R, Phillips JA, Collins TS, Winkelstein J, Valle D. J Biol Chem; 1994 Nov 04; 269(44):27727-31. PubMed ID: 7961694 [Abstract] [Full Text] [Related]
17. Molecular basis of complement resistance of human melanoma cells expressing the C3-cleaving membrane protease p65. Ollert MW, Kadlec JV, Petrella EC, Bredehorst R, Vogel CW. Cancer Res; 1993 Feb 01; 53(3):592-9. PubMed ID: 8425193 [Abstract] [Full Text] [Related]
18. Regulation and deregulation of the fluid-phase classical pathway C3 convertase. Gigli I, Sorvillo J, Halbwachs-Mecarelli L. J Immunol; 1985 Jul 01; 135(1):440-4. PubMed ID: 3158705 [Abstract] [Full Text] [Related]
19. Role of the C3b-binding site on C4b-binding protein in regulating classical pathway C5 convertase. Rawal N, Pangburn MK. Mol Immunol; 2007 Feb 01; 44(6):1105-14. PubMed ID: 16979240 [Abstract] [Full Text] [Related]
20. Localization of the covalent C3b-binding site on C4b within the complement classical pathway C5 convertase, C4b2a3b. Kozono H, Kinoshita T, Kim YU, Takata-Kozono Y, Tsunasawa S, Sakiyama F, Takeda J, Hong K, Inoue K. J Biol Chem; 1990 Aug 25; 265(24):14444-9. PubMed ID: 2387864 [Abstract] [Full Text] [Related] Page: [Next] [New Search]