These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


153 related items for PubMed ID: 7884686

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Acid/base transport across the leech giant glial cell membrane at low external bicarbonate concentration.
    Deitmer JW, Schneider HP.
    J Physiol; 1998 Oct 15; 512 ( Pt 2)(Pt 2):459-69. PubMed ID: 9763635
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Ca2+ influx into leech glial cells and neurones caused by pharmacologically distinct glutamate receptors.
    Hochstrate P, Schlue WR.
    Glia; 1994 Dec 15; 12(4):268-80. PubMed ID: 7890331
    [Abstract] [Full Text] [Related]

  • 7. Mechanism of potassium uptake in neuropile glial cells in the central nervous system of the leech.
    Wuttke WA.
    J Neurophysiol; 1990 May 15; 63(5):1089-97. PubMed ID: 2358863
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. An inwardly directed electrogenic sodium-bicarbonate co-transport in leech glial cells.
    Deitmer JW, Schlue WR.
    J Physiol; 1989 Apr 15; 411():179-94. PubMed ID: 2559193
    [Abstract] [Full Text] [Related]

  • 11. Effects of glutamatergic agonists and antagonists on membrane potential and intracellular Na+ activity of leech glial and nerve cells.
    Dörner R, Zens M, Schlue WR.
    Brain Res; 1994 Nov 28; 665(1):47-53. PubMed ID: 7882017
    [Abstract] [Full Text] [Related]

  • 12. Ionic mechanisms of intracellular pH regulation in the nervous system.
    Schlue WR, Deitmer JW.
    Ciba Found Symp; 1988 Nov 28; 139():47-69. PubMed ID: 2849530
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system.
    Dörner R, Ballanyi K, Schlue WR.
    Brain Res; 1990 Jul 16; 523(1):111-6. PubMed ID: 2169963
    [Abstract] [Full Text] [Related]

  • 15. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system.
    Deitmer JW, Szatkowski M.
    J Physiol; 1990 Feb 16; 421():617-31. PubMed ID: 2112195
    [Abstract] [Full Text] [Related]

  • 16. Na+-dependent regulation of the free Mg2+ concentration in neuropile glial cells and P neurones of the leech Hirudo medicinalis.
    Hintz K, Günzel D, Schlue WR.
    Pflugers Arch; 1999 Feb 16; 437(3):354-62. PubMed ID: 9914391
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Chloride-dependent pH regulation in connective glial cells of the leech nervous system.
    Szatkowski MS, Schlue WR.
    Brain Res; 1994 Nov 28; 665(1):1-4. PubMed ID: 7882000
    [Abstract] [Full Text] [Related]

  • 19. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system.
    Frey G, Schlue WR.
    J Physiol; 1993 Mar 28; 462():627-43. PubMed ID: 8331595
    [Abstract] [Full Text] [Related]

  • 20. Evidence for the uptake of neuronally derived choline by glial cells in the leech central nervous system.
    Wuttke WA, Pentreath VW.
    J Physiol; 1990 Jan 28; 420():387-408. PubMed ID: 2324991
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.