These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


146 related items for PubMed ID: 788791

  • 1. Effect of antihistamines and chlorpromazine on the calcium-induced hyperpolarization of the Amphiuma red cell membrane.
    Gárdos G, Lassen UV, Pape L.
    Biochim Biophys Acta; 1976 Nov 02; 448(4):599-606. PubMed ID: 788791
    [Abstract] [Full Text] [Related]

  • 2. Effect of extracellular Ca2+, K+ and OH- on erythrocyte membrane potential as monitored by the fluorescent probe 3,3'-dipropylthiodicarbocyanine.
    Pape L.
    Biochim Biophys Acta; 1982 Apr 07; 686(2):225-32. PubMed ID: 7082665
    [Abstract] [Full Text] [Related]

  • 3. Effect of calcium on the membrane potential of Amphiuma red cells.
    Lassen UV, Pape L, Vestergaard-Bogind B.
    J Membr Biol; 1976 Feb 17; 26(1):51-70. PubMed ID: 3652
    [Abstract] [Full Text] [Related]

  • 4. Calcium-induced oscillations in K+ conductance and membrane potential of human erythrocytes mediated by the ionophore A23187.
    Vestergaard-Bogind B, Bennekou P.
    Biochim Biophys Acta; 1982 May 21; 688(1):37-44. PubMed ID: 6284234
    [Abstract] [Full Text] [Related]

  • 5. [Participation of calmodulin in the regulation of plasma membrane electric potential by intracellular calcium].
    Orlov SN, Kravtsov GM.
    Biokhimiia; 1983 Sep 21; 48(9):1447-55. PubMed ID: 6414535
    [Abstract] [Full Text] [Related]

  • 6. Determination of membrane potentials in human and Amphiuma red blood cells by means of fluorescent probe.
    Hoffman JF, Laris PC.
    J Physiol; 1974 Jun 21; 239(3):519-52. PubMed ID: 4851321
    [Abstract] [Full Text] [Related]

  • 7. Influence of Ca2+ on red cell deformability and adaptation to sphering agents.
    Rogausch H.
    Pflugers Arch; 1978 Jan 31; 373(1):43-7. PubMed ID: 345218
    [Abstract] [Full Text] [Related]

  • 8. Magnesium inhibition of hyperpolarization of the Amphiuma red cell membrane induced by calcium and A23187 [proceedings].
    Dissing S, Lassen UV, Scharff O.
    J Physiol; 1979 Apr 31; 289():29P-30P. PubMed ID: 379304
    [No Abstract] [Full Text] [Related]

  • 9. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC, Roxburgh CJ, Ganellin CR, Shiner MA, Jenkinson DH.
    Br J Pharmacol; 1999 Jan 31; 126(1):169-78. PubMed ID: 10051133
    [Abstract] [Full Text] [Related]

  • 10. The Ca2+-sensitive K+ transport in inside-out red cell membrane vesicles.
    Szebeni J.
    Acta Biochim Biophys Acad Sci Hung; 1981 Jan 31; 16(1-2):77-82. PubMed ID: 6278807
    [Abstract] [Full Text] [Related]

  • 11. Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange.
    Cala PM.
    J Gen Physiol; 1983 Dec 31; 82(6):761-84. PubMed ID: 6420507
    [Abstract] [Full Text] [Related]

  • 12. Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture.
    Lassen UV, Pape L, Vestergaard-Bogind B, Bengtson O.
    J Membr Biol; 1974 Dec 31; 18(2):125-44. PubMed ID: 4472868
    [No Abstract] [Full Text] [Related]

  • 13. Chloride permeability in human red cells: influence of membrane protein rearrangement resulting from ATP depletion and calcium accumulation.
    Motais R, Baroin A, Baldy S.
    J Membr Biol; 1981 Dec 31; 62(3):195-206. PubMed ID: 6799647
    [Abstract] [Full Text] [Related]

  • 14. The mechanism of vanadium action on selective K+-permeability in human erythrocytes.
    Fuhrmann GF, Hüttermann J, Knauf PA.
    Biochim Biophys Acta; 1984 Jan 11; 769(1):130-40. PubMed ID: 6419778
    [Abstract] [Full Text] [Related]

  • 15. The effect of cellular calcium on Na+/K+ cotransport in human red blood cells.
    Dagher G.
    Biochim Biophys Acta; 1987 May 29; 899(2):313-6. PubMed ID: 3107614
    [Abstract] [Full Text] [Related]

  • 16. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN, Pokudin NI, Kotelevtsev IuV.
    Biokhimiia; 1987 Aug 29; 52(8):1373-86. PubMed ID: 2444274
    [Abstract] [Full Text] [Related]

  • 17. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A, Cytlak U, Ciuraszkiewicz A, Lipinska A, Cueff A, Bouyer G, Egée S, Bennekou P, Lew VL, Thomas SL.
    PLoS One; 2010 Feb 26; 5(2):e9447. PubMed ID: 20195477
    [Abstract] [Full Text] [Related]

  • 18. Calcium and ionophore A23187 induce the sickle cell membrane phosphorylation pattern in normal erythrocytes.
    Johnson RM, Dzandu JK.
    Biochim Biophys Acta; 1982 Nov 08; 692(2):218-22. PubMed ID: 6816279
    [Abstract] [Full Text] [Related]

  • 19. Phenothiazine inhibition of calmodulin stimulates calcium-dependent potassium efflux in human red blood cells.
    Plishker GA.
    Cell Calcium; 1984 Apr 08; 5(2):177-85. PubMed ID: 6234067
    [Abstract] [Full Text] [Related]

  • 20. Calcium, cell shrinkage, and prolytic state of human red blood cells.
    Crespo LM, Novak TS, Freedman JC.
    Am J Physiol; 1987 Feb 08; 252(2 Pt 1):C138-52. PubMed ID: 3103462
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.