These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
172 related items for PubMed ID: 7897693
1. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. Dallas CE, Chen XM, Muralidhara S, Varkonyi P, Tackett RL, Bruckner JV. J Toxicol Environ Health; 1995 Mar; 44(3):301-17. PubMed ID: 7897693 [Abstract] [Full Text] [Related]
4. Schedule-controlled operant behavior of rats following oral administration of perchloroethylene: time course and relationship to blood and brain solvent levels. Warren DA, Reigle TG, Muralidhara S, Dallas CE. J Toxicol Environ Health; 1996 Mar; 47(4):345-62. PubMed ID: 8600288 [Abstract] [Full Text] [Related]
5. Development of a physiologically based pharmacokinetic model for perchloroethylene using tissue concentration-time data. Dallas CE, Chen XM, O'Barr K, Muralidhara S, Varkonyi P, Bruckner JV. Toxicol Appl Pharmacol; 1994 Sep; 128(1):50-9. PubMed ID: 8079354 [Abstract] [Full Text] [Related]
6. Computer simulation of the lactational transfer of tetrachloroethylene in rats using a physiologically based model. Byczkowski JZ, Kinkead ER, Leahy HF, Randall GM, Fisher JW. Toxicol Appl Pharmacol; 1994 Apr; 125(2):228-36. PubMed ID: 8171430 [Abstract] [Full Text] [Related]
7. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene. Keys DA, Bruckner JV, Muralidhara S, Fisher JW. Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716 [Abstract] [Full Text] [Related]
8. Acute perchloroethylene exposure alters rat visual-evoked potentials in relation to brain concentrations. Boyes WK, Bercegeay M, Oshiro WM, Krantz QT, Kenyon EM, Bushnell PJ, Benignus VA. Toxicol Sci; 2009 Mar; 108(1):159-72. PubMed ID: 19098276 [Abstract] [Full Text] [Related]
9. The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene. Covington TR, Robinan Gentry P, Van Landingham CB, Andersen ME, Kester JE, Clewell HJ. Regul Toxicol Pharmacol; 2007 Feb; 47(1):1-18. PubMed ID: 16901594 [Abstract] [Full Text] [Related]
10. Uptake, distribution, and elimination of carbon tetrachloride in rat tissues following inhalation and ingestion exposures. Sanzgiri UY, Srivatsan V, Muralidhara S, Dallas CE, Bruckner JV. Toxicol Appl Pharmacol; 1997 Mar; 143(1):120-9. PubMed ID: 9073600 [Abstract] [Full Text] [Related]
11. Bayesian analysis of a physiologically based pharmacokinetic model for perchloroethylene in humans. Qiu J, Chien YC, Bruckner JV, Fisher JW. J Toxicol Environ Health A; 2010 Mar; 73(1):74-91. PubMed ID: 19953421 [Abstract] [Full Text] [Related]
12. Prediction of oral pharmacokinetics of cMet kinase inhibitors in humans: physiologically based pharmacokinetic model versus traditional one-compartment model. Yamazaki S, Skaptason J, Romero D, Vekich S, Jones HM, Tan W, Wilner KD, Koudriakova T. Drug Metab Dispos; 2011 Mar; 39(3):383-93. PubMed ID: 21098644 [Abstract] [Full Text] [Related]
13. Physiologically based pharmacokinetic rat model for methyl tertiary-butyl ether; comparison of selected dose metrics following various MTBE exposure scenarios used for toxicity and carcinogenicity evaluation. Borghoff SJ, Parkinson H, Leavens TL. Toxicology; 2010 Sep 10; 275(1-3):79-91. PubMed ID: 20561556 [Abstract] [Full Text] [Related]
14. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. Krishnan K, Crouse LC, Bazar MA, Major MA, Reddy G. J Appl Toxicol; 2009 Oct 10; 29(7):629-37. PubMed ID: 19629953 [Abstract] [Full Text] [Related]
15. Kinetic modeling of beta-chloroprene metabolism: II. The application of physiologically based modeling for cancer dose response analysis. Himmelstein MW, Carpenter SC, Evans MV, Hinderliter PM, Kenyon EM. Toxicol Sci; 2004 May 10; 79(1):28-37. PubMed ID: 14976335 [Abstract] [Full Text] [Related]
16. Variability of physiologically based pharmacokinetic (PBPK) model parameters and their effects on PBPK model predictions in a risk assessment for perchloroethylene (PCE). Gearhart JM, Mahle DA, Greene RJ, Seckel CS, Flemming CD, Fisher JW, Clewell HJ. Toxicol Lett; 1993 May 10; 68(1-2):131-44. PubMed ID: 8516760 [Abstract] [Full Text] [Related]
17. Physiologically based pharmacokinetic modeling of FTY720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) in rats after oral and intravenous doses. Meno-Tetang GM, Li H, Mis S, Pyszczynski N, Heining P, Lowe P, Jusko WJ. Drug Metab Dispos; 2006 Sep 10; 34(9):1480-7. PubMed ID: 16751263 [Abstract] [Full Text] [Related]
18. NTP Toxicology and Carcinogenesis Studies of Methyleugenol (CAS NO. 93-15-2) in F344/N Rats and B6C3F1 Mice (Gavage Studies). National Toxicology Program . Natl Toxicol Program Tech Rep Ser; 2000 Jul 10; 491():1-412. PubMed ID: 12563349 [Abstract] [Full Text] [Related]
19. Plasma and tissue levels of furosemide in dogs and monkeys following single and multiple oral doses. Yakatan GJ, Maness DD, Scholler J, Johnston JT, Novick WJ, Doluisio JT. Res Commun Chem Pathol Pharmacol; 1979 Jun 10; 24(3):465-82. PubMed ID: 109903 [Abstract] [Full Text] [Related]
20. Pharmacokinetics of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in the beagle dog and rhesus monkey: perspective on the reduced capacity of dogs to excrete this organic acid relative to the rat, monkey, and human. Timchalk C, Nolan RJ. Toxicol Appl Pharmacol; 1997 Jun 10; 144(2):268-78. PubMed ID: 9194410 [Abstract] [Full Text] [Related] Page: [Next] [New Search]