These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 7902599
1. Molecular typing of Chlamydia trachomatis by random amplification of polymorphic DNA. Scieux C, Grimont F, Regnault B, Bianchi A, Kowalski S, Grimont PA. Res Microbiol; 1993 Jun; 144(5):395-404. PubMed ID: 7902599 [Abstract] [Full Text] [Related]
2. DNA fingerprinting of Chlamydia trachomatis by use of ribosomal RNA, oligonucleotide and randomly cloned DNA probes. Scieux C, Grimont F, Regnault B, Grimont PA. Res Microbiol; 1992 Oct; 143(8):755-65. PubMed ID: 1298028 [Abstract] [Full Text] [Related]
4. Distinguishing Chlamydia species by restriction analysis of the major outer membrane protein gene. Black CM, Tharpe JA, Russell H. Mol Cell Probes; 1992 Oct; 6(5):395-400. PubMed ID: 1361962 [Abstract] [Full Text] [Related]
5. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes. Madico G, Quinn TC, Boman J, Gaydos CA. J Clin Microbiol; 2000 Mar; 38(3):1085-93. PubMed ID: 10699002 [Abstract] [Full Text] [Related]
6. Genomic relatedness of Chlamydia isolates determined by amplified fragment length polymorphism analysis. Meijer A, Morré SA, van den Brule AJ, Savelkoul PH, Ossewaarde JM. J Bacteriol; 1999 Aug; 181(15):4469-75. PubMed ID: 10419941 [Abstract] [Full Text] [Related]
8. Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. Holland SM, Gaydos CA, Quinn TC. J Infect Dis; 1990 Oct; 162(4):984-7. PubMed ID: 2401796 [Abstract] [Full Text] [Related]
9. Diversity of feline Chlamydia psittaci revealed by random amplification of polymorphic DNA. Pudjiatmoko, Fukushi H, Ochiai Y, Yamaguchi T, Hirai K. Vet Microbiol; 1997 Jan; 54(1):73-83. PubMed ID: 9050172 [Abstract] [Full Text] [Related]
10. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. Pannekoek Y, Morelli G, Kusecek B, Morré SA, Ossewaarde JM, Langerak AA, van der Ende A. BMC Microbiol; 2008 Feb 28; 8():42. PubMed ID: 18307777 [Abstract] [Full Text] [Related]
11. Detection of sequence variation in PCR-amplified fragments of omp2 gene from three species of the family Chlamydiaceae using agarose gel electrophoresis containing bisbenzimide-PEG. Demkin VV, Edelstein MV, Zimin AL, Edelstein IA, Suvorov MM. FEMS Microbiol Lett; 2000 Mar 15; 184(2):215-8. PubMed ID: 10713423 [Abstract] [Full Text] [Related]
12. Phylogenetic relationship of Chlamydia pneumoniae to Chlamydia psittaci and Chlamydia trachomatis as determined by analysis of 16S ribosomal DNA sequences. Gaydos CA, Palmer L, Quinn TC, Falkow S, Eiden JJ. Int J Syst Bacteriol; 1993 Jul 15; 43(3):610-2. PubMed ID: 8347519 [Abstract] [Full Text] [Related]
13. Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. Lan J, Walboomers JM, Roosendaal R, van Doornum GJ, MacLaren DM, Meijer CJ, van den Brule AJ. J Clin Microbiol; 1993 May 15; 31(5):1060-5. PubMed ID: 8099080 [Abstract] [Full Text] [Related]
14. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. Pettersson B, Andersson A, Leitner T, Olsvik O, Uhlén M, Storey C, Black CM. J Bacteriol; 1997 Jul 15; 179(13):4195-205. PubMed ID: 9209033 [Abstract] [Full Text] [Related]
15. Typing of Chlamydia trachomatis strains from urine samples by amplification and sequencing the major outer membrane protein gene (omp1). Bandea CI, Kubota K, Brown TM, Kilmarx PH, Bhullar V, Yanpaisarn S, Chaisilwattana P, Siriwasin W, Black CM. Sex Transm Infect; 2001 Dec 15; 77(6):419-22. PubMed ID: 11714939 [Abstract] [Full Text] [Related]
16. PCR detection and differentiation of Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia trachomatis. Rasmussen SJ, Douglas FP, Timms P. Mol Cell Probes; 1992 Oct 15; 6(5):389-94. PubMed ID: 1361961 [Abstract] [Full Text] [Related]
17. Polymerase chain reaction (PCR) detection of porcine Chlamydia trachomatis and ruminant Chlamydia psittaci serovar 1 DNA in formalin-fixed intestinal specimens from swine. Schiller I, Koesters R, Weilenmann R, Kaltenboeck B, Pospischil A. Zentralbl Veterinarmed B; 1997 May 15; 44(3):185-91. PubMed ID: 9197211 [Abstract] [Full Text] [Related]
18. Genotyping of Chlamydia trachomatis strains from cultured isolates and nucleic acid amplification test-positive specimens. Oehme A, Gaschler G, Straube E. Int J Med Microbiol; 2003 Jun 15; 293(2-3):225-8. PubMed ID: 12868660 [Abstract] [Full Text] [Related]
20. Typing of Listeria strains by random amplification of polymorphic DNA. Mazurier SI, Wernars K. Res Microbiol; 1992 Jun 15; 143(5):499-505. PubMed ID: 1448625 [Abstract] [Full Text] [Related] Page: [Next] [New Search]