These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
212 related items for PubMed ID: 7909337
1. Effects of L-cysteine on the oxidation chemistry of dopamine: new reaction pathways of potential relevance to idiopathic Parkinson's disease. Zhang F, Dryhurst G. J Med Chem; 1994 Apr 15; 37(8):1084-98. PubMed ID: 7909337 [Abstract] [Full Text] [Related]
2. Further insights into the influence of L-cysteine on the oxidation chemistry of dopamine: reaction pathways of potential relevance to Parkinson's disease. Shen XM, Dryhurst G. Chem Res Toxicol; 1996 Jun 15; 9(4):751-63. PubMed ID: 8831820 [Abstract] [Full Text] [Related]
3. Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson's disease. Shen XM, Xia B, Wrona MZ, Dryhurst G. Chem Res Toxicol; 1996 Jun 15; 9(7):1117-26. PubMed ID: 8902266 [Abstract] [Full Text] [Related]
4. Iron- and manganese-catalyzed autoxidation of dopamine in the presence of L-cysteine: possible insights into iron- and manganese-mediated dopaminergic neurotoxicity. Shen XM, Dryhurst G. Chem Res Toxicol; 1998 Jul 15; 11(7):824-37. PubMed ID: 9671546 [Abstract] [Full Text] [Related]
6. Irreversible inhibition of mitochondrial complex I by 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1): a putative nigral endotoxin of relevance to Parkinson's disease. Li H, Dryhurst G. J Neurochem; 1997 Oct 15; 69(4):1530-41. PubMed ID: 9326282 [Abstract] [Full Text] [Related]
7. Brain mitochondria catalyze the oxidation of 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxyli c acid (DHBT-1) to intermediates that irreversibly inhibit complex I and scavenge glutathione: potential relevance to the pathogenesis of Parkinson's disease. Li H, Shen XM, Dryhurst G. J Neurochem; 1998 Nov 15; 71(5):2049-62. PubMed ID: 9798930 [Abstract] [Full Text] [Related]
12. The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. Fornstedt B, Brun A, Rosengren E, Carlsson A. J Neural Transm Park Dis Dement Sect; 1989 Nov 15; 1(4):279-95. PubMed ID: 2597314 [Abstract] [Full Text] [Related]
13. Glutathione redox status in mitochondria and cytoplasm differentially and sequentially activates apoptosis cascade in dopamine-melanin-treated SH-SY5Y cells. Naoi M, Yi H, Maruyama W, Inaba K, Shamoto-Nagai M, Akao Y, Gerlach M, Riederer P. Neurosci Lett; 2009 Nov 13; 465(2):118-22. PubMed ID: 19737600 [Abstract] [Full Text] [Related]
14. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. J Neurochem; 1998 Nov 13; 71(5):2112-22. PubMed ID: 9798937 [Abstract] [Full Text] [Related]
15. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. ACS Chem Neurosci; 2017 Apr 19; 8(4):702-711. PubMed ID: 28233992 [Abstract] [Full Text] [Related]
16. Drug treatment of Parkinson's disease. Time for phase II. Drukarch B, van Muiswinkel FL. Biochem Pharmacol; 2000 May 01; 59(9):1023-31. PubMed ID: 10704931 [Abstract] [Full Text] [Related]
17. Protective and toxic roles of dopamine in Parkinson's disease. Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. J Neurochem; 2014 Jun 01; 129(6):898-915. PubMed ID: 24548101 [Abstract] [Full Text] [Related]
18. The role of tyrosine hydroxylase as a key player in neuromelanin synthesis and the association of neuromelanin with Parkinson's disease. Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K, Zucca FA, Zecca L, Youdim M, Wulf M, Riederer P, Dijkstra JM. J Neural Transm (Vienna); 2023 May 01; 130(5):611-625. PubMed ID: 36939908 [Abstract] [Full Text] [Related]
20. Cysteine and mercapturate conjugates of oxidized dopamine are in human striatum but only the cysteine conjugate impedes dopamine trafficking in vitro and in vivo. Sidell KR, Olson SJ, Ou JJ, Zhang Y, Amarnath V, Montine TJ. J Neurochem; 2001 Nov 01; 79(3):510-21. PubMed ID: 11701754 [Abstract] [Full Text] [Related] Page: [Next] [New Search]