These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 7910203

  • 1. Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes.
    Volterra A, Trotti D, Tromba C, Floridi S, Racagni G.
    J Neurosci; 1994 May; 14(5 Pt 1):2924-32. PubMed ID: 7910203
    [Abstract] [Full Text] [Related]

  • 2. Methylmercury-mediated inhibition of 3H-D-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase.
    Allen JW, Mutkus LA, Aschner M.
    Brain Res; 2001 May 25; 902(1):92-100. PubMed ID: 11376598
    [Abstract] [Full Text] [Related]

  • 3. Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications.
    Volterra A, Trotti D, Floridi S, Racagni G.
    Ann N Y Acad Sci; 1994 Nov 17; 738():153-62. PubMed ID: 7832426
    [No Abstract] [Full Text] [Related]

  • 4. Alterations in cardiac contractile proteins due to oxygen free radicals.
    Suzuki S, Kaneko M, Chapman DC, Dhalla NS.
    Biochim Biophys Acta; 1991 May 24; 1074(1):95-100. PubMed ID: 1646033
    [Abstract] [Full Text] [Related]

  • 5. Inhibition of cardiac sarcolemma Na(+)-K+ ATPase by oxyradical generating systems.
    Shao Q, Matsubara T, Bhatt SK, Dhalla NS.
    Mol Cell Biochem; 1991 May 24; 147(1-2):139-44. PubMed ID: 7494543
    [Abstract] [Full Text] [Related]

  • 6. Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes.
    Sorg O, Horn TF, Yu N, Gruol DL, Bloom FE.
    Mol Med; 1997 Jul 24; 3(7):431-40. PubMed ID: 9260155
    [Abstract] [Full Text] [Related]

  • 7. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals.
    Yuan G, Kaneko M, Masuda H, Hon RB, Kobayashi A, Yamazaki N.
    Biochim Biophys Acta; 1992 Nov 16; 1140(1):78-84. PubMed ID: 1329980
    [Abstract] [Full Text] [Related]

  • 8. Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species.
    Berman SB, Hastings TG.
    J Neurochem; 1997 Sep 16; 69(3):1185-95. PubMed ID: 9282942
    [Abstract] [Full Text] [Related]

  • 9. Studies on the specificity of the effects of oxygen metabolites on cardiac sodium pump.
    Xie ZJ, Wang YH, Askari A, Huang WH, Klaunig JE, Askari A.
    J Mol Cell Cardiol; 1990 Aug 16; 22(8):911-20. PubMed ID: 2172559
    [Abstract] [Full Text] [Related]

  • 10. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage.
    Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carla V, Moroni F.
    J Neurosci; 1990 Mar 16; 10(3):1035-41. PubMed ID: 1969465
    [Abstract] [Full Text] [Related]

  • 11. Overexpression of Cu,Zn superoxide dismutase attenuates oxidative inhibition of astrocyte glutamate uptake.
    Chen Y, Ying W, Simma V, Copin JC, Chan PH, Swanson RA.
    J Neurochem; 2000 Sep 16; 75(3):939-45. PubMed ID: 10936174
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of heart sarcolemmal Ca(2+)-pump activity by oxygen free radicals.
    Kaneko M, Hayashi H, Kobayashi A, Yamazaki N, Dhalla NS.
    Bratisl Lek Listy; 1991 Jan 16; 92(1):48-56. PubMed ID: 2021866
    [Abstract] [Full Text] [Related]

  • 13. Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms.
    Volterra A, Trotti D, Racagni G.
    Mol Pharmacol; 1994 Nov 16; 46(5):986-92. PubMed ID: 7969090
    [Abstract] [Full Text] [Related]

  • 14. The role of sulfhydryl groups and calcium in the mercuric chloride-induced inhibition of glutamate uptake in rat primary astrocyte cultures.
    Albrecht J, Talbot M, Kimelberg HK, Aschner M.
    Brain Res; 1993 Apr 02; 607(1-2):249-54. PubMed ID: 8097664
    [Abstract] [Full Text] [Related]

  • 15. Excitatory amino acid release from rat hippocampal slices as a consequence of free-radical formation.
    Pellegrini-Giampietro DE, Cherici G, Alesiani M, Carlà V, Moroni F.
    J Neurochem; 1988 Dec 02; 51(6):1960-3. PubMed ID: 2903225
    [Abstract] [Full Text] [Related]

  • 16. Effects of free radicals on cytosolic creatine kinase activities and protection by antioxidant enzymes and sulfhydryl compounds.
    Genet S, Kale RK, Baquer NZ.
    Mol Cell Biochem; 2000 Jul 02; 210(1-2):23-8. PubMed ID: 10976754
    [Abstract] [Full Text] [Related]

  • 17. Effects of reactive oxygen species on prostacyclin production in perinatal rat lung cells.
    Lee DS, McCallum EA, Olson DM.
    J Appl Physiol (1985); 1989 Mar 02; 66(3):1321-7. PubMed ID: 2651389
    [Abstract] [Full Text] [Related]

  • 18. Loss of the metal binding properties of metallothionein induced by hydrogen peroxide and free radicals.
    Jiménez I, Gotteland M, Zarzuelo A, Uauy R, Speisky H.
    Toxicology; 1997 Jun 06; 120(1):37-46. PubMed ID: 9160107
    [Abstract] [Full Text] [Related]

  • 19. Influence of oxygen free radicals and free radical scavengers on the growth behaviour and oxidative tissue damage of bovine retinal pigment epithelium cells in vitro.
    Augustin AJ, Hunt S, Breipohl W, Böker T, Spitznas M.
    Graefes Arch Clin Exp Ophthalmol; 1996 Jan 06; 234(1):58-63. PubMed ID: 8750852
    [Abstract] [Full Text] [Related]

  • 20. Time course of structure, function, and metabolic changes due to an exogenous source of oxygen metabolites in rat heart.
    Gupta M, Singal PK.
    Can J Physiol Pharmacol; 1989 Dec 06; 67(12):1549-59. PubMed ID: 2627693
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.