These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


82 related items for PubMed ID: 7910847

  • 1. Excitatory interactions between glutamate receptors and protein kinases.
    Soderling TR, Tan SE, McGlade-McCulloh E, Yamamoto H, Fukunaga K.
    J Neurobiol; 1994 Mar; 25(3):304-11. PubMed ID: 7910847
    [Abstract] [Full Text] [Related]

  • 2. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II.
    McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR.
    Nature; 1993 Apr 15; 362(6421):640-2. PubMed ID: 8385275
    [Abstract] [Full Text] [Related]

  • 3. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
    Miyamoto E, Fukunaga K.
    Neurosci Res; 1996 Jan 15; 24(2):117-22. PubMed ID: 8929917
    [Abstract] [Full Text] [Related]

  • 4. Postsynaptic signaling networks: cellular cogwheels underlying long-term plasticity.
    Blitzer RD, Iyengar R, Landau EM.
    Biol Psychiatry; 2005 Jan 15; 57(2):113-9. PubMed ID: 15652868
    [Abstract] [Full Text] [Related]

  • 5. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W, Tsuzuki K, Yoshida Y, Kameyama K, Ozawa S.
    Eur J Neurosci; 2004 Jul 15; 20(1):101-10. PubMed ID: 15245483
    [Abstract] [Full Text] [Related]

  • 6. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS, Shi SH, Ule J, Ruggiu M, Barker LA, Darnell RB, Jan YN, Jan LY.
    Cell; 2005 Oct 07; 123(1):105-18. PubMed ID: 16213216
    [Abstract] [Full Text] [Related]

  • 7. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX, Dong ZF, Tian M, Cao J, Xu L, Luo JH.
    Neuroscience; 2006 Sep 01; 141(3):1399-413. PubMed ID: 16766131
    [Abstract] [Full Text] [Related]

  • 8. The molecular basis of CaMKII function in synaptic and behavioural memory.
    Lisman J, Schulman H, Cline H.
    Nat Rev Neurosci; 2002 Mar 01; 3(3):175-90. PubMed ID: 11994750
    [Abstract] [Full Text] [Related]

  • 9. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR, Medina JH, Izquierdo I, Cammarota M.
    Neuroscience; 2005 Mar 01; 136(2):397-403. PubMed ID: 16182449
    [Abstract] [Full Text] [Related]

  • 10. Long-term potentiation and glutamate receptors: a role for protein kinases.
    Müller D.
    Ren Physiol Biochem; 1994 Mar 01; 17(3-4):157-60. PubMed ID: 7518947
    [No Abstract] [Full Text] [Related]

  • 11. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D, Watson JB, Xie CW.
    J Neurophysiol; 2004 Nov 01; 92(5):2853-8. PubMed ID: 15212428
    [Abstract] [Full Text] [Related]

  • 12. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB, Khorasani H, Persson A, Huang KP, Huang FL, O'Dell TJ.
    J Neurosci Res; 2002 Nov 01; 70(3):298-308. PubMed ID: 12391589
    [Abstract] [Full Text] [Related]

  • 13. Activity-driven postsynaptic translocation of CaMKII.
    Merrill MA, Chen Y, Strack S, Hell JW.
    Trends Pharmacol Sci; 2005 Dec 01; 26(12):645-53. PubMed ID: 16253351
    [Abstract] [Full Text] [Related]

  • 14. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin.
    Fukunaga K, Horikawa K, Shibata S, Takeuchi Y, Miyamoto E.
    J Neurosci Res; 2002 Dec 15; 70(6):799-807. PubMed ID: 12444602
    [Abstract] [Full Text] [Related]

  • 15. [Molecular mechanisms for memory formation].
    Manabe T.
    Brain Nerve; 2008 Jul 15; 60(7):707-15. PubMed ID: 18646610
    [Abstract] [Full Text] [Related]

  • 16. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL.
    Nature; 2000 Jun 22; 405(6789):955-9. PubMed ID: 10879537
    [Abstract] [Full Text] [Related]

  • 17. alphaCaMKII Is essential for cerebellar LTD and motor learning.
    Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, De Zeeuw CI, Elgersma Y.
    Neuron; 2006 Sep 21; 51(6):835-43. PubMed ID: 16982427
    [Abstract] [Full Text] [Related]

  • 18. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII.
    Margrie TW, Rostas JA, Sah P.
    Nat Neurosci; 1998 Sep 21; 1(5):378-83. PubMed ID: 10196527
    [Abstract] [Full Text] [Related]

  • 19. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation.
    Sharma K, Fong DK, Craig AM.
    Mol Cell Neurosci; 2006 Apr 21; 31(4):702-12. PubMed ID: 16504537
    [Abstract] [Full Text] [Related]

  • 20. A fresh look at the role of CaMKII in hippocampal synaptic plasticity and memory.
    Rongo C.
    Bioessays; 2002 Mar 21; 24(3):223-33. PubMed ID: 11891759
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.