These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


253 related items for PubMed ID: 7912405

  • 21. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells.
    Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK.
    Brain Res Mol Brain Res; 1996 Feb; 36(1):193-6. PubMed ID: 9011759
    [Abstract] [Full Text] [Related]

  • 22. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to cAMP elevation and phorbol esters.
    Wan DC, Marley PD, Livett BG.
    Brain Res Mol Brain Res; 1991 Jan; 9(1-2):135-42. PubMed ID: 1850068
    [Abstract] [Full Text] [Related]

  • 23. Mechanisms involved in the transcriptional activation of proenkephalin gene expression in bovine chromaffin cells.
    Farin CJ, Kley N, Höllt V.
    J Biol Chem; 1990 Nov 05; 265(31):19116-21. PubMed ID: 2229066
    [Abstract] [Full Text] [Related]

  • 24. Regulation of tyrosine hydroxylase gene expression by the m1 muscarinic acetylcholine receptor in rat pheochromocytoma cells.
    Chen Y, Best JA, Nagamoto K, Tank AW.
    Brain Res Mol Brain Res; 1996 Aug 05; 40(1):42-54. PubMed ID: 8840012
    [Abstract] [Full Text] [Related]

  • 25. Differential induction of gene expression of catecholamine biosynthetic enzymes and preferential increase in norepinephrine by forskolin.
    Hwang O, Kim ML, Lee JD.
    Biochem Pharmacol; 1994 Nov 16; 48(10):1927-34. PubMed ID: 7986204
    [Abstract] [Full Text] [Related]

  • 26. Veratridine-induced phosphorylation and activation of tyrosine hydroxylase, and synthesis of catecholamines in cultured bovine adrenal medullary cells.
    Uezono Y, Yanagihara N, Wada A, Koda Y, Yokota K, Kobayashi H, Izumi F.
    Naunyn Schmiedebergs Arch Pharmacol; 1989 Jun 16; 339(6):653-9. PubMed ID: 2570366
    [Abstract] [Full Text] [Related]

  • 27. Molecular mechanisms underlying the regulation of proenkephalin gene expression in cultured spinal cord cells.
    Ha TS, Kim YH, Song DK, Wie MB, Suh HW.
    Neuropeptides; 1996 Oct 16; 30(5):506-13. PubMed ID: 8923515
    [Abstract] [Full Text] [Related]

  • 28. Transsynaptic activity regulates proenkephalin and tyrosine hydroxylase gene expression and the response to reserpine in the hamster adrenal.
    Franklin SO, Zhu YS, Yoburn BC, Inturrisi CE.
    Mol Pharmacol; 1991 Oct 16; 40(4):515-22. PubMed ID: 1717819
    [Abstract] [Full Text] [Related]

  • 29. Regulation of proenkephalin gene expression by angiotensin in bovine adrenal medullary cells: Molecular mechanisms and nature of the second messenger systems.
    Stachowiak MK, Poisner A, Jiang HK, Hudson PH, Hong JS.
    Mol Cell Neurosci; 1991 Jun 16; 2(3):213-20. PubMed ID: 19912801
    [Abstract] [Full Text] [Related]

  • 30. Long-term stimulation of nicotinic receptors is required to increase proenkephalin A mRNA levels and the delayed secretion of [Met5]-enkephalin in bovine adrenal medullary chromaffin cells.
    Suh HW, Hudson PM, McMillian MK, Das KP, Wilson BC, Wu GC, Hong JS.
    J Pharmacol Exp Ther; 1995 Dec 16; 275(3):1663-70. PubMed ID: 8531142
    [Abstract] [Full Text] [Related]

  • 31. Interaction of a glucocorticoid-responsive element with regulatory sequences in the promoter region of the mouse tyrosine hydroxylase gene.
    Hagerty T, Fernandez E, Lynch K, Wang SS, Morgan WW, Strong R.
    J Neurochem; 2001 Sep 16; 78(6):1379-88. PubMed ID: 11579146
    [Abstract] [Full Text] [Related]

  • 32. Differential effects of increasing gestational age and placental restriction on tyrosine hydroxylase, phenylethanolamine N-methyltransferase, and proenkephalin A mRNA levels in the fetal sheep adrenal.
    Adams MB, Phillips ID, Simonetta G, McMillen IC.
    J Neurochem; 1998 Jul 16; 71(1):394-401. PubMed ID: 9648889
    [Abstract] [Full Text] [Related]

  • 33. A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways.
    Evinger MJ, Ernsberger P, Regunathan S, Joh TH, Reis DJ.
    J Neurosci; 1994 Apr 16; 14(4):2106-16. PubMed ID: 7512633
    [Abstract] [Full Text] [Related]

  • 34. Butyrate, a gut-derived environmental signal, regulates tyrosine hydroxylase gene expression via a novel promoter element.
    Patel P, Nankova BB, LaGamma EF.
    Brain Res Dev Brain Res; 2005 Nov 07; 160(1):53-62. PubMed ID: 16165221
    [Abstract] [Full Text] [Related]

  • 35. Role of Egr-1 in cAMP-dependent protein kinase regulation of the phenylethanolamine N-methyltransferase gene.
    Tai TC, Morita K, Wong DL.
    J Neurochem; 2001 Mar 07; 76(6):1851-9. PubMed ID: 11259503
    [Abstract] [Full Text] [Related]

  • 36. Transcriptional control of adrenal catecholamine and opiate peptide transmitter genes.
    La Gamma EF, Black IB.
    Brain Res Mol Brain Res; 1989 Jan 07; 5(1):17-22. PubMed ID: 2564622
    [Abstract] [Full Text] [Related]

  • 37. Cruciform-extruding regulatory element controls cell-specific activity of the tyrosine hydroxylase gene promoter.
    Kim EL, Peng H, Esparza FM, Maltchenko SZ, Stachowiak MK.
    Nucleic Acids Res; 1998 Apr 01; 26(7):1793-800. PubMed ID: 9512554
    [Abstract] [Full Text] [Related]

  • 38. Angiotensin II type 2 receptor counter-regulates type 1 receptor in catecholamine synthesis in cultured porcine adrenal medullary chromaffin cells.
    Takekoshi K, Ishii K, Shibuya S, Kawakami Y, Isobe K, Nakai T.
    Hypertension; 2002 Jan 01; 39(1):142-8. PubMed ID: 11799093
    [Abstract] [Full Text] [Related]

  • 39. Transcriptional and posttranscriptional control of tyrosine hydroxylase gene expression during persistent stimulation of pituitary adenylate cyclase-activating polypeptide receptors on PC12 cells: regulation by protein kinase A-dependent and protein kinase A-independent pathways.
    Corbitt J, Vivekananda J, Wang SS, Strong R.
    J Neurochem; 1998 Aug 01; 71(2):478-86. PubMed ID: 9681437
    [Abstract] [Full Text] [Related]

  • 40. Chronic isolation of adult rats decreases gene expression of catecholamine biosynthetic enzymes in adrenal medulla.
    Gavrilovic L, Spasojevic N, Tanic N, Dronjak S.
    Neuro Endocrinol Lett; 2008 Dec 01; 29(6):1015-20. PubMed ID: 19112418
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.