These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
245 related items for PubMed ID: 7914488
1. Calcium and 2-oxoglutarate-mediated control of aspartate formation by rat heart mitochondria. Scaduto RC. Eur J Biochem; 1994 Aug 01; 223(3):751-8. PubMed ID: 7914488 [Abstract] [Full Text] [Related]
2. CONTROL OF GLUTAMATE OXIDATION IN BRAIN AND LIVER MITOCHONDRIAL SYSTEMS. BALAZS R. Biochem J; 1965 May 01; 95(2):497-508. PubMed ID: 14340100 [Abstract] [Full Text] [Related]
3. The regulation of glutamate metabolism by tricarboxylic acid-cycle activity in rat brain mitochondria. Dennis SC, Clark JB. Biochem J; 1978 Apr 15; 172(1):155-62. PubMed ID: 656069 [Abstract] [Full Text] [Related]
4. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate. Hansford RG, Castro F. Biochem J; 1981 Sep 15; 198(3):525-33. PubMed ID: 6275851 [Abstract] [Full Text] [Related]
5. Effect of aspartate and glutamate on the oxoglutarate carrier investigated in rat heart mitochondria and inverted submitochondrial vesicles. Hautecler JJ, Sluse-Goffart CM, Evens A, Duyckaerts C, Sluse FE. Biochim Biophys Acta; 1994 Apr 28; 1185(2):153-9. PubMed ID: 7909447 [Abstract] [Full Text] [Related]
6. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart. Wiesner RJ, Kreutzer U, Rösen P, Grieshaber MK. Biochim Biophys Acta; 1988 Oct 26; 936(1):114-23. PubMed ID: 2902879 [Abstract] [Full Text] [Related]
7. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria. Denton RM, McCormack JG, Edgell NJ. Biochem J; 1980 Jul 15; 190(1):107-17. PubMed ID: 6160850 [Abstract] [Full Text] [Related]
8. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio. Korge P, Calmettes G, Weiss JN. Free Radic Biol Med; 2016 Jul 15; 96():22-33. PubMed ID: 27068062 [Abstract] [Full Text] [Related]
9. Pathway of carbon flow during fatty acid synthesis from lactate and pyruvate in rat adipose tissue. Patel MS, Jomain-Baum M, Ballard FJ, Hanson RW. J Lipid Res; 1971 Mar 15; 12(2):179-91. PubMed ID: 4396562 [Abstract] [Full Text] [Related]
10. Calcium signaling in brain mitochondria: interplay of malate aspartate NADH shuttle and calcium uniporter/mitochondrial dehydrogenase pathways. Contreras L, Satrústegui J. J Biol Chem; 2009 Mar 13; 284(11):7091-9. PubMed ID: 19129175 [Abstract] [Full Text] [Related]
11. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria. McCormack JG. Biochem J; 1985 Nov 01; 231(3):581-95. PubMed ID: 3000355 [Abstract] [Full Text] [Related]
12. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Ashour B, Hansford RG. Biochem J; 1983 Sep 15; 214(3):725-36. PubMed ID: 6138029 [Abstract] [Full Text] [Related]
13. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Rutter GA, Denton RM. Biochem J; 1988 May 15; 252(1):181-9. PubMed ID: 3421900 [Abstract] [Full Text] [Related]
14. Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle. Strzelecki T, Strzelecka D, Koch CD, LaNoue KF. Arch Biochem Biophys; 1988 Jul 15; 264(1):310-20. PubMed ID: 2899419 [Abstract] [Full Text] [Related]
15. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. McCormack JG, Denton RM. Biochem J; 1984 Feb 15; 218(1):235-47. PubMed ID: 6424656 [Abstract] [Full Text] [Related]
16. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria. Scholz TD, Koppenhafer SL, tenEyck CJ, Schutte BC. Am J Physiol; 1998 Mar 15; 274(3):C780-8. PubMed ID: 9530110 [Abstract] [Full Text] [Related]
17. EXCHANGE TRANSAMINATION AND THE METABOLISM OF GLUTAMATE IN BRAIN. BALAZS R, HASLAM J. Biochem J; 1965 Jan 15; 94(1):131-41. PubMed ID: 14342220 [Abstract] [Full Text] [Related]
18. Influence of the malate-aspartate shuttle on oxidative metabolism in synaptosomes. Cheeseman AJ, Clark JB. J Neurochem; 1988 May 15; 50(5):1559-65. PubMed ID: 3361310 [Abstract] [Full Text] [Related]
19. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes. Sibille B, Keriel C, Fontaine E, Catelloni F, Rigoulet M, Leverve XM. Eur J Biochem; 1995 Jul 15; 231(2):498-502. PubMed ID: 7635161 [Abstract] [Full Text] [Related]
20. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria. McCormack JG, Bromidge ES, Dawes NJ. Biochim Biophys Acta; 1988 Jul 27; 934(3):282-92. PubMed ID: 2840116 [Abstract] [Full Text] [Related] Page: [Next] [New Search]