These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


245 related items for PubMed ID: 7914488

  • 21. Inhibition of 2-oxoglutarate oxidation in plant mitochondria by pyruvate.
    Dry IB, Wiskich JT.
    Biochem Biophys Res Commun; 1985 Dec 17; 133(2):397-403. PubMed ID: 4084285
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. THE OXIDATION OF GLUTAMATE BY RAT-LIVER MITOCHONDRIA.
    QUAGLIARIELLO E, PAPA S, SACCONE C, PALMIERI F, FRANCAVILLA A.
    Biochem J; 1965 Jun 17; 95(3):742-8. PubMed ID: 14342510
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Effect of free malonate on the utilization of glutamate by rat brain mitochondria.
    Koeppen AH, Riley KM.
    J Neurochem; 1987 May 17; 48(5):1509-15. PubMed ID: 2881982
    [Abstract] [Full Text] [Related]

  • 29. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle.
    Bremer J, Davis EJ.
    Biochim Biophys Acta; 1975 Mar 20; 376(3):387-97. PubMed ID: 164904
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Glutamate-malate metabolism in liver mitochondria. A model constructed on the basis of mitochondrial levels of enzymes, specificity, dissociation constants, and stoichiometry of hetero-enzyme complexes.
    Fahien LA, Teller JK.
    J Biol Chem; 1992 May 25; 267(15):10411-22. PubMed ID: 1350279
    [Abstract] [Full Text] [Related]

  • 36. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT, Gu L, Parrillo JE.
    J Mol Cell Cardiol; 1998 Aug 25; 30(8):1571-9. PubMed ID: 9737943
    [Abstract] [Full Text] [Related]

  • 37. Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes.
    McKenna MC, Tildon JT, Stevenson JH, Huang X, Kingwell KG.
    Neurochem Res; 1995 Dec 25; 20(12):1491-501. PubMed ID: 8789613
    [Abstract] [Full Text] [Related]

  • 38. Evidence for the role of malic enzyme in the rapid oxidation of malate by cod heart mitochondria.
    Skorkowski EF, Aleksandrowicz Z, Scisłowski PW, Swierczyński J.
    Comp Biochem Physiol B; 1984 Dec 25; 77(2):379-84. PubMed ID: 6697695
    [Abstract] [Full Text] [Related]

  • 39. Control of reversible intracellular transfer of reducing potential.
    Kunz WS, Davis EJ.
    Arch Biochem Biophys; 1991 Jan 25; 284(1):40-6. PubMed ID: 1824912
    [Abstract] [Full Text] [Related]

  • 40. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV, Scaduto RC.
    Arch Biochem Biophys; 1995 Feb 01; 316(2):815-20. PubMed ID: 7864638
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.