These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 7916209

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP, Franke RR, Khorana HG.
    Proc Natl Acad Sci U S A; 1991 Apr 15; 88(8):3079-83. PubMed ID: 2014228
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K, Jäger F, Beck M, Zvyaga TA, Sakmar TP, Siebert F.
    Proc Natl Acad Sci U S A; 1993 Nov 01; 90(21):10206-10. PubMed ID: 7901852
    [Abstract] [Full Text] [Related]

  • 6. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R, Fan GB, Siebert F, Sheves M.
    Biochemistry; 2001 Nov 06; 40(44):13342-52. PubMed ID: 11683644
    [Abstract] [Full Text] [Related]

  • 7. Transducin-dependent protonation of glutamic acid 134 in rhodopsin.
    Fahmy K, Sakmar TP, Siebert F.
    Biochemistry; 2000 Aug 29; 39(34):10607-12. PubMed ID: 10956053
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA, Fahmy K, Sakmar TP.
    Biochemistry; 1994 Aug 16; 33(32):9753-61. PubMed ID: 8068654
    [Abstract] [Full Text] [Related]

  • 10. Structural changes of water molecules during the photoactivation processes in bovine rhodopsin.
    Furutani Y, Shichida Y, Kandori H.
    Biochemistry; 2003 Aug 19; 42(32):9619-25. PubMed ID: 12911303
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation.
    Rath P, DeCaluwé LL, Bovee-Geurts PH, DeGrip WJ, Rothschild KJ.
    Biochemistry; 1993 Oct 05; 32(39):10277-82. PubMed ID: 8399169
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Water structural changes in lumirhodopsin, metarhodopsin I, and metarhodopsin II upon photolysis of bovine rhodopsin: analysis by Fourier transform infrared spectroscopy.
    Maeda A, Ohkita YJ, Sasaki J, Shichida Y, Yoshizawa T.
    Biochemistry; 1993 Nov 16; 32(45):12033-8. PubMed ID: 8218280
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.