These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
130 related items for PubMed ID: 7919195
1. Regulation by CDF/LIF and retinoic acid of multiple ChAT mRNAs produced from distinct promoters. Cervini R, Berrard S, Bejanin S, Mallet J. Neuroreport; 1994 Jun 27; 5(11):1346-8. PubMed ID: 7919195 [Abstract] [Full Text] [Related]
2. Differential expression and regulation of the high-affinity choline transporter CHT1 and choline acetyltransferase in neurons of superior cervical ganglia. Lecomte MJ, De Gois S, Guerci A, Ravassard P, Faucon Biguet N, Mallet J, Berrard S. Mol Cell Neurosci; 2005 Feb 27; 28(2):303-13. PubMed ID: 15691711 [Abstract] [Full Text] [Related]
3. Cholinergic differentiation of cultured sympathetic neurons induced by retinoic acid. Induction of choline acetyltransferase-mRNA and suppression of tyrosine hydroxylase-mRNA levels. Kobayashi M, Matsuoka I, Kurihara K. FEBS Lett; 1994 Jan 17; 337(3):259-64. PubMed ID: 7904945 [Abstract] [Full Text] [Related]
4. Retinoic acid induces cholinergic differentiation of cultured newborn rat sympathetic neurons. Berrard S, Faucon Biguet N, Houhou L, Lamouroux A, Mallet J. J Neurosci Res; 1993 Jul 01; 35(4):382-9. PubMed ID: 8103115 [Abstract] [Full Text] [Related]
5. Coordinate expression of vesicular acetylcholine transporter and choline acetyltransferase in sympathetic superior cervical neurones. Misawa H, Takahashi R, Deguchi T. Neuroreport; 1995 May 09; 6(7):965-8. PubMed ID: 7632900 [Abstract] [Full Text] [Related]
6. Effect of total or partial uterus extirpation on uterus-projecting neurons in porcine inferior mesenteric ganglion. A. Changes in expression of transmitter-synthesizing enzymes--tyrosine hydroxylase, dopamine beta-hydroxylase and choline acetyltransferase. Wasowicz K. Pol J Vet Sci; 2003 May 09; 6(2):131-45. PubMed ID: 12817784 [Abstract] [Full Text] [Related]
7. Coordinate regulation of choline acetyltransferase, tyrosine hydroxylase, and neuropeptide mRNAs by ciliary neurotrophic factor and leukemia inhibitory factor in cultured sympathetic neurons. Lewis SE, Rao MS, Symes AJ, Dauer WT, Fink JS, Landis SC, Hyman SE. J Neurochem; 1994 Aug 09; 63(2):429-38. PubMed ID: 7518494 [Abstract] [Full Text] [Related]
8. Differential and coordinated regulation of expression of norepinephrine transporter in catecholaminergic cells in culture. Matsuoka I, Kumagai M, Kurihara K. Brain Res; 1997 Nov 21; 776(1-2):181-8. PubMed ID: 9439811 [Abstract] [Full Text] [Related]
9. Development of CNS cholinergic neurons in vitro: selective effects of CNTF and LIF on neurons from mesencephalic cranial motor nuclei. Zurn AD, Werren F. Dev Biol; 1994 Jun 21; 163(2):309-15. PubMed ID: 7911111 [Abstract] [Full Text] [Related]
10. Expression of mRNA encoding neurotrophic factors and its regulation in a hybrid neuronal cell line. Nakanishi T, Ishii K, Fukushima N, Asanuma M, Iwata E, Ogawa N. Biochem Mol Biol Int; 1996 Apr 21; 38(4):763-72. PubMed ID: 8728106 [Abstract] [Full Text] [Related]
11. Regulation of vasoactive intestinal peptide expression in sympathetic neurons in culture and after axotomy: the role of cholinergic differentiation factor/leukemia inhibitory factor. Sun Y, Rao MS, Zigmond RE, Landis SC. J Neurobiol; 1994 Apr 21; 25(4):415-30. PubMed ID: 8077967 [Abstract] [Full Text] [Related]
12. Regulation of GTP cyclohydrolase I gene expression and tetrahydrobiopterin content in cultured sympathetic neurons by leukemia inhibitory factor and ciliary neurotrophic factor. Stegenga SL, Hirayama K, Kapatos G. J Neurochem; 1996 Jun 21; 66(6):2541-5. PubMed ID: 8632180 [Abstract] [Full Text] [Related]
13. Induction of cholinergic function in cultured sympathetic neurons by periosteal cells: cellular mechanisms. Asmus SE, Tian H, Landis SC. Dev Biol; 2001 Jul 01; 235(1):1-11. PubMed ID: 11412023 [Abstract] [Full Text] [Related]
14. LIF is an autocrine factor for sympathetic neurons. Cheng JG, Patterson PH. Mol Cell Neurosci; 1997 Jul 01; 9(5-6):372-80. PubMed ID: 9361275 [Abstract] [Full Text] [Related]
15. Cytokine suppression of dopamine-beta-hydroxylase by extracellular signal-regulated kinase-dependent and -independent pathways. Dziennis S, Habecker BA. J Biol Chem; 2003 May 02; 278(18):15897-904. PubMed ID: 12609984 [Abstract] [Full Text] [Related]
16. Coregulation of two embedded gene products, choline acetyltransferase and the vesicular acetylcholine transporter. Berrard S, Varoqui H, Cervini R, Israël M, Mallet J, Diebler MF. J Neurochem; 1995 Aug 02; 65(2):939-42. PubMed ID: 7616258 [Abstract] [Full Text] [Related]
17. CNTF and LIF are not required for the target-directed acquisition of cholinergic and peptidergic properties by sympathetic neurons in vivo. Francis NJ, Asmus SE, Landis SC. Dev Biol; 1997 Feb 01; 182(1):76-87. PubMed ID: 9073449 [Abstract] [Full Text] [Related]
18. Leukemia inhibitory factor and neurotrophins support overlapping populations of rat nodose sensory neurons in culture. Thaler CD, Suhr L, Ip N, Katz DM. Dev Biol; 1994 Feb 01; 161(2):338-44. PubMed ID: 8313987 [Abstract] [Full Text] [Related]
19. Recombinant cholinergic differentiation factor (leukemia inhibitory factor) regulates sympathetic neuron phenotype by alterations in the size and amounts of neuropeptide mRNAs. Nawa H, Nakanishi S, Patterson PH. J Neurochem; 1991 Jun 01; 56(6):2147-50. PubMed ID: 1902872 [Abstract] [Full Text] [Related]
20. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Ling ZD, Potter ED, Lipton JW, Carvey PM. Exp Neurol; 1998 Feb 01; 149(2):411-23. PubMed ID: 9500954 [Abstract] [Full Text] [Related] Page: [Next] [New Search]