These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 7929461

  • 1. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N, Suzuki Y, Soutani M, Maeda N.
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [Abstract] [Full Text] [Related]

  • 2. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M.
    Nihon Seirigaku Zasshi; 1994 Sep; 56(6):181-95. PubMed ID: 8078034
    [Abstract] [Full Text] [Related]

  • 3. Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance.
    Maeda N, Suzuki Y, Tanaka J, Tateishi N.
    Am J Physiol; 1996 Dec; 271(6 Pt 2):H2454-61. PubMed ID: 8997305
    [Abstract] [Full Text] [Related]

  • 4. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y, Tateishi N, Soutani M, Maeda N.
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Quantitative evaluation of flow dynamics of erythrocytes in microvessels: influence of erythrocyte aggregation.
    Soutani M, Suzuki Y, Tateishi N, Maeda N.
    Am J Physiol; 1995 May; 268(5 Pt 2):H1959-65. PubMed ID: 7539592
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T, Rongin U, Xing Z.
    Sci Rep; 2016 Feb 02; 6():20262. PubMed ID: 26830454
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Flow behaviour of rigid red blood cells in the microcirculation.
    Driessen GK, Fischer TM, Haest CW, Inhoffen W, Schmid-Schönbein H.
    Int J Microcirc Clin Exp; 1984 Feb 02; 3(2):197-210. PubMed ID: 6490327
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Erythrocyte deformability and lung segmental vascular resistance: effect of hematocrit.
    Raj JU, Anderson J.
    J Appl Physiol (1985); 1991 Mar 02; 70(3):1386-92. PubMed ID: 2033008
    [Abstract] [Full Text] [Related]

  • 18. Electrostatic repulsion among erythrocytes in tube flow, demonstrated by the thickness of marginal cell-free layer.
    Suzuki Y, Tateishi N, Maeda N.
    Biorheology; 1998 Mar 02; 35(2):155-70. PubMed ID: 10193487
    [Abstract] [Full Text] [Related]

  • 19. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR, Secomb TW.
    Am J Physiol Heart Circ Physiol; 2005 Dec 02; 289(6):H2657-64. PubMed ID: 16040719
    [Abstract] [Full Text] [Related]

  • 20. Effect of pentoxifylline on microvascular blood flow velocity.
    Ohshima N, Sato M.
    Angiology; 1981 Nov 02; 32(11):752-63. PubMed ID: 7325410
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.