These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


413 related items for PubMed ID: 7932757

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. GEMDOCK: a generic evolutionary method for molecular docking.
    Yang JM, Chen CC.
    Proteins; 2004 May 01; 55(2):288-304. PubMed ID: 15048822
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45. Steering protein-ligand docking with quantitative NMR chemical shift perturbations.
    González-Ruiz D, Gohlke H.
    J Chem Inf Model; 2009 Oct 01; 49(10):2260-71. PubMed ID: 19795907
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. SODOCK: swarm optimization for highly flexible protein-ligand docking.
    Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY.
    J Comput Chem; 2007 Jan 30; 28(2):612-23. PubMed ID: 17186483
    [Abstract] [Full Text] [Related]

  • 49. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S, Kollman PA.
    Proteins; 1993 Jul 30; 16(3):226-45. PubMed ID: 8346190
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. The MPSim-Dock hierarchical docking algorithm: application to the eight trypsin inhibitor cocrystals.
    Cho AE, Wendel JA, Vaidehi N, Kekenes-Huskey PM, Floriano WB, Maiti PK, Goddard WA.
    J Comput Chem; 2005 Jan 15; 26(1):48-71. PubMed ID: 15529328
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Improving conformational searches by geometric screening.
    Zhang M, White RA, Wang L, Goldman R, Kavraki L, Hassett B.
    Bioinformatics; 2005 Mar 01; 21(5):624-30. PubMed ID: 15479715
    [Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Virtual ligand screening against Escherichia coli dihydrofolate reductase: improving docking enrichment using physics-based methods.
    Bernacki K, Kalyanaraman C, Jacobson MP.
    J Biomol Screen; 2005 Oct 01; 10(7):675-81. PubMed ID: 16170049
    [Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Flexible docking allowing induced fit in proteins: insights from an open to closed conformational isomers.
    Sandak B, Wolfson HJ, Nussinov R.
    Proteins; 1998 Aug 01; 32(2):159-74. PubMed ID: 9714156
    [Abstract] [Full Text] [Related]

  • 58. Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm.
    Wu G, Robertson DH, Brooks CL, Vieth M.
    J Comput Chem; 2003 Oct 01; 24(13):1549-62. PubMed ID: 12925999
    [Abstract] [Full Text] [Related]

  • 59. Effective handling of induced-fit motion in flexible docking.
    Mizutani MY, Takamatsu Y, Ichinose T, Nakamura K, Itai A.
    Proteins; 2006 Jun 01; 63(4):878-91. PubMed ID: 16532451
    [Abstract] [Full Text] [Related]

  • 60. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints.
    Renner S, Derksen S, Radestock S, Mörchen F.
    J Chem Inf Model; 2008 Feb 01; 48(2):319-32. PubMed ID: 18211051
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.