These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
413 related items for PubMed ID: 7932757
61. Ligand-protein docking with water molecules. Roberts BC, Mancera RL. J Chem Inf Model; 2008 Feb; 48(2):397-408. PubMed ID: 18211049 [Abstract] [Full Text] [Related]
62. Flexible docking using Tabu search and an empirical estimate of binding affinity. Baxter CA, Murray CW, Clark DE, Westhead DR, Eldridge MD. Proteins; 1998 Nov 15; 33(3):367-82. PubMed ID: 9829696 [Abstract] [Full Text] [Related]
63. Computer simulation of protein-ligand interactions: challenges and applications. Hassan SA, Gracia L, Vasudevan G, Steinbach PJ. Methods Mol Biol; 2005 Nov 15; 305():451-92. PubMed ID: 15940011 [Abstract] [Full Text] [Related]
64. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein. Li H, Li C. J Comput Chem; 2010 Jul 30; 31(10):2014-22. PubMed ID: 20166125 [Abstract] [Full Text] [Related]
66. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach. Estrada T, Zhang B, Cicotti P, Armen RS, Taufer M. Comput Biol Med; 2012 Jul 30; 42(7):758-71. PubMed ID: 22658682 [Abstract] [Full Text] [Related]
67. Conformational flexibility and protein specificity. Roberts GC. Ciba Found Symp; 1991 Jul 30; 158():169-82; discussion 182-6, 204-12. PubMed ID: 1935420 [Abstract] [Full Text] [Related]
68. Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Moon JB, Howe WJ. Proteins; 1991 Jul 30; 11(4):314-28. PubMed ID: 1758885 [Abstract] [Full Text] [Related]
69. Flexible protein-protein docking based on Best-First search algorithm. Noy E, Goldblum A. J Comput Chem; 2010 Jul 15; 31(9):1929-43. PubMed ID: 20087902 [Abstract] [Full Text] [Related]
70. A python-based docking program utilizing a receptor bound ligand shape: PythDock. Chung JY, Cho SJ, Hah JM. Arch Pharm Res; 2011 Sep 15; 34(9):1451-8. PubMed ID: 21975806 [Abstract] [Full Text] [Related]
71. Homology-modelling protein-ligand interactions: allowing for ligand-induced conformational change. Dalton JA, Jackson RM. J Mol Biol; 2010 Jun 18; 399(4):645-61. PubMed ID: 20434455 [Abstract] [Full Text] [Related]
72. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design. Du QS, Gao J, Wei YT, Du LQ, Wang SQ, Huang RB. J Chem Inf Model; 2012 Apr 23; 52(4):996-1004. PubMed ID: 22480344 [Abstract] [Full Text] [Related]
73. Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints. Constantine KL. Biophys J; 2001 Sep 23; 81(3):1275-84. PubMed ID: 11509344 [Abstract] [Full Text] [Related]
74. Monte Carlo docking with ubiquitin. Cummings MD, Hart TN, Read RJ. Protein Sci; 1995 May 23; 4(5):885-99. PubMed ID: 7663344 [Abstract] [Full Text] [Related]
75. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Rastelli G, Del Rio A, Degliesposti G, Sgobba M. J Comput Chem; 2010 Mar 23; 31(4):797-810. PubMed ID: 19569205 [Abstract] [Full Text] [Related]
76. Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility. Borrelli KW, Cossins B, Guallar V. J Comput Chem; 2010 Apr 30; 31(6):1224-35. PubMed ID: 19885871 [Abstract] [Full Text] [Related]