These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Combined defect of long-chain 3-hydroxyacyl-CoA dehydrogenase, 2-enoyl-CoA hydratase and 3-oxoacyl-CoA thiolase. Jackson S, Kler RS, Bartlett K, Pourfarzam M, Aynsley-Green A, Bindoff LA, Turnbull DM. Prog Clin Biol Res; 1992; 375():327-37. PubMed ID: 1438378 [No Abstract] [Full Text] [Related]
3. Mitochondrial trifunctional protein deficiency. Catalytic heterogeneity of the mutant enzyme in two patients. Kamijo T, Wanders RJ, Saudubray JM, Aoyama T, Komiyama A, Hashimoto T. J Clin Invest; 1994 Apr; 93(4):1740-7. PubMed ID: 8163672 [Abstract] [Full Text] [Related]
4. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. Uchida Y, Izai K, Orii T, Hashimoto T. J Biol Chem; 1992 Jan 15; 267(2):1034-41. PubMed ID: 1730633 [Abstract] [Full Text] [Related]
5. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli. He XY, Yang SY. Biochemistry; 1996 Jul 23; 35(29):9625-30. PubMed ID: 8755745 [Abstract] [Full Text] [Related]
6. Molecular cloning of the cDNAs for the subunits of rat mitochondrial fatty acid beta-oxidation multienzyme complex. Structural and functional relationships to other mitochondrial and peroxisomal beta-oxidation enzymes. Kamijo T, Aoyama T, Miyazaki J, Hashimoto T. J Biol Chem; 1993 Dec 15; 268(35):26452-60. PubMed ID: 8253773 [Abstract] [Full Text] [Related]
7. Combined enzyme defect of mitochondrial fatty acid oxidation. Jackson S, Kler RS, Bartlett K, Briggs H, Bindoff LA, Pourfarzam M, Gardner-Medwin D, Turnbull DM. J Clin Invest; 1992 Oct 15; 90(4):1219-25. PubMed ID: 1401059 [Abstract] [Full Text] [Related]
8. Clinical and biochemical presentation of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Hagenfeldt L, Venizelos N, von Döbeln U. J Inherit Metab Dis; 1995 Oct 15; 18(2):245-8. PubMed ID: 7564259 [No Abstract] [Full Text] [Related]
9. Differentiation of long-chain fatty acid oxidation disorders using alternative precursors and acylcarnitine profiling in fibroblasts. Roe DS, Yang BZ, Vianey-Saban C, Struys E, Sweetman L, Roe CR. Mol Genet Metab; 2006 Jan 15; 87(1):40-7. PubMed ID: 16297647 [Abstract] [Full Text] [Related]
10. General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha- or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover. Spiekerkoetter U, Khuchua Z, Yue Z, Bennett MJ, Strauss AW. Pediatr Res; 2004 Feb 15; 55(2):190-6. PubMed ID: 14630990 [Abstract] [Full Text] [Related]
11. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: high frequency of the G1528C mutation with no apparent correlation with the clinical phenotype. Ijlst L, Uskikubo S, Kamijo T, Hashimoto T, Ruiter JP, de Klerk JB, Wanders RJ. J Inherit Metab Dis; 1995 Feb 15; 18(2):241-4. PubMed ID: 7564258 [No Abstract] [Full Text] [Related]
12. Intact alpha-subunit is required for membrane-binding of human mitochondrial trifunctional beta-oxidation protein, but is not necessary for conferring 3-ketoacyl-CoA thiolase activity to the beta-subunit. Weinberger MJ, Rinaldo P, Strauss AW, Bennett MJ. Biochem Biophys Res Commun; 1995 Apr 06; 209(1):47-52. PubMed ID: 7726862 [Abstract] [Full Text] [Related]
13. Structural and functional characterization of the recombinant human mitochondrial trifunctional protein. Fould B, Garlatti V, Neumann E, Fenel D, Gaboriaud C, Arlaud GJ. Biochemistry; 2010 Oct 05; 49(39):8608-17. PubMed ID: 20825197 [Abstract] [Full Text] [Related]
14. Glutamate 139 of the large alpha-subunit is the catalytic base in the dehydration of both D- and L-3-hydroxyacyl-coenzyme A but not in the isomerization of delta 3, delta 2-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli. Yang SY, He XY, Schulz H. Biochemistry; 1995 May 16; 34(19):6441-7. PubMed ID: 7756275 [Abstract] [Full Text] [Related]
15. Structure of mycobacterial β-oxidation trifunctional enzyme reveals its altered assembly and putative substrate channeling pathway. Venkatesan R, Wierenga RK. ACS Chem Biol; 2013 May 17; 8(5):1063-73. PubMed ID: 23496842 [Abstract] [Full Text] [Related]
16. Importance of the gamma-carboxyl group of glutamate-462 of the large alpha-subunit for the catalytic function and the stability of the multienzyme complex of fatty acid oxidation from Escherichia coli. He XY, Deng H, Yang SY. Biochemistry; 1997 Jan 07; 36(1):261-8. PubMed ID: 8993342 [Abstract] [Full Text] [Related]
17. Enzymes of fatty acid beta-oxidation in developing brain. Reichmann H, Maltese WA, DeVivo DC. J Neurochem; 1988 Aug 07; 51(2):339-44. PubMed ID: 2899130 [Abstract] [Full Text] [Related]
18. Complementation analysis of fibroblasts from peroxisomal fatty acid oxidation deficient patients shows high frequency of bifunctional enzyme deficiency plus intragenic complementation: unequivocal evidence for differential defects in the same enzyme protein. van Grunsven EG, van Roermund CW, Denis S, Wanders RJ. Biochem Biophys Res Commun; 1997 Jun 09; 235(1):176-9. PubMed ID: 9196058 [Abstract] [Full Text] [Related]