These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 7943275

  • 1. Na(+)-coupled alanine transport in LLC-PK1 cells.
    Kimmich GA, Randles J, Wilson J.
    Am J Physiol; 1994 Oct; 267(4 Pt 1):C1119-29. PubMed ID: 7943275
    [Abstract] [Full Text] [Related]

  • 2. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells.
    Wilson JJ, Randles J, Kimmich GA.
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429
    [Abstract] [Full Text] [Related]

  • 3. Sodium-dependent succinate transport by isolated chick intestinal cells.
    Kimmich GA, Randles J, Bennett E.
    Am J Physiol; 1991 Jun; 260(6 Pt 1):C1151-7. PubMed ID: 2058650
    [Abstract] [Full Text] [Related]

  • 4. Polarized amino acid transport by an epithelial cell line of renal origin (LLC-PK1). The basolateral systems.
    Rabito CA, Karish MV.
    J Biol Chem; 1982 Jun 25; 257(12):6802-8. PubMed ID: 7085605
    [Abstract] [Full Text] [Related]

  • 5. Na+-coupled alanine transport in LLC-PK1 cells: the relationship between the Km for Na+ at low [Alanine] and potential dependence for the system.
    Wilson JJ, Randles J, Kimmich GA.
    J Membr Biol; 1998 Oct 01; 165(3):275-82. PubMed ID: 9767681
    [Abstract] [Full Text] [Related]

  • 6. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK, Kippen I, Hirayama B, Wright EM.
    J Membr Biol; 1982 Oct 01; 64(1-2):113-22. PubMed ID: 7057450
    [Abstract] [Full Text] [Related]

  • 7. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. Ouabain simulates the starvation-induced derepression of system A amino acid transport.
    White MF, Christensen HN.
    J Biol Chem; 1983 Jul 10; 258(13):8028-38. PubMed ID: 6863276
    [Abstract] [Full Text] [Related]

  • 8. High- and low-affinity transport of L-leucine and L-DOPA by the hetero amino acid exchangers LAT1 and LAT2 in LLC-PK1 renal cells.
    Soares-da-Silva P, Serrão MP.
    Am J Physiol Renal Physiol; 2004 Aug 10; 287(2):F252-61. PubMed ID: 15271688
    [Abstract] [Full Text] [Related]

  • 9. Characterization of neutral and cationic amino acid transport in Xenopus oocytes.
    Campa MJ, Kilberg MS.
    J Cell Physiol; 1989 Dec 10; 141(3):645-52. PubMed ID: 2592432
    [Abstract] [Full Text] [Related]

  • 10. Utilization of ATP-depleted cells in the analysis of taurocholate uptake by isolated rat hepatocytes.
    Yamazaki M, Sugiyama Y, Suzuki H, Iga T, Hanano M.
    J Hepatol; 1992 Jan 10; 14(1):54-63. PubMed ID: 1737916
    [Abstract] [Full Text] [Related]

  • 11. Whole cell recording of sugar-induced currents in LLC-PK1 cells.
    Smith-Maxwell C, Bennett E, Randles J, Kimmich GA.
    Am J Physiol; 1990 Feb 10; 258(2 Pt 1):C234-42. PubMed ID: 2305866
    [Abstract] [Full Text] [Related]

  • 12. Energetics of alanine, lysine, and proline transport in cytoplasmic membranes of the polyphosphate-accumulating Acinetobacter johnsonii strain 210A.
    Van Veen HW, Abee T, Kleefsman AW, Melgers B, Kortstee GJ, Konings WN, Zehnder AJ.
    J Bacteriol; 1994 May 10; 176(9):2670-6. PubMed ID: 8169217
    [Abstract] [Full Text] [Related]

  • 13. Characteristics of glutamine transport in sarcolemmal vesicles from rat skeletal muscle.
    Ahmed A, Taylor PM, Rennie MJ.
    Am J Physiol; 1990 Aug 10; 259(2 Pt 1):E284-91. PubMed ID: 2116727
    [Abstract] [Full Text] [Related]

  • 14. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE, Peran S.
    Biochim Biophys Acta; 1986 Jun 26; 858(2):263-74. PubMed ID: 3087423
    [Abstract] [Full Text] [Related]

  • 15. Characteristics of Na+-dependent hexose transport in OK, an established renal epithelial cell line.
    Van den Bosch L, De Smedt H, Borghgraef R.
    Biochim Biophys Acta; 1989 Feb 13; 979(1):91-8. PubMed ID: 2917171
    [Abstract] [Full Text] [Related]

  • 16. The potential dependence of the intestinal Na+-dependent sugar transporter.
    Kimmich GA, Randles J, Restrepo D, Montrose M.
    Ann N Y Acad Sci; 1985 Feb 13; 456():63-76. PubMed ID: 3911844
    [Abstract] [Full Text] [Related]

  • 17. Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2.
    Sawada K, Terada T, Saito H, Hashimoto Y, Inui K.
    Br J Pharmacol; 1999 Nov 13; 128(6):1159-64. PubMed ID: 10578127
    [Abstract] [Full Text] [Related]

  • 18. Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na+ gradient.
    Blitzer BL, Ratoosh SL, Donovan CB.
    Am J Physiol; 1983 Sep 13; 245(3):G399-403. PubMed ID: 6614184
    [Abstract] [Full Text] [Related]

  • 19. Na+-dependent hexose transport in vesicles from cultured renal epithelial cell line.
    Moran A, Handler JS, Turner RJ.
    Am J Physiol; 1982 Nov 13; 243(5):C293-8. PubMed ID: 7137338
    [Abstract] [Full Text] [Related]

  • 20. Dibasic amino acid interactions with Na+-independent transport system asc in horse erythrocytes. Kinetic evidence of functional and structural homology with Na+-dependent system ASC.
    Fincham DA, Mason DK, Young JD.
    Biochim Biophys Acta; 1988 Jan 13; 937(1):184-94. PubMed ID: 3334844
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.