These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 7948670

  • 1. Computer simulation of a model network for the erythrocyte cytoskeleton.
    Boal DH.
    Biophys J; 1994 Aug; 67(2):521-9. PubMed ID: 7948670
    [Abstract] [Full Text] [Related]

  • 2. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.
    Picart C, Dalhaimer P, Discher DE.
    Biophys J; 2000 Dec; 79(6):2987-3000. PubMed ID: 11106606
    [Abstract] [Full Text] [Related]

  • 3. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC, Skalak R, Chien S, Hoger A.
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [Abstract] [Full Text] [Related]

  • 4. Cytoskeleton mediated effective elastic properties of model red blood cell membranes.
    Zhang R, Brown FL.
    J Chem Phys; 2008 Aug 14; 129(6):065101. PubMed ID: 18715105
    [Abstract] [Full Text] [Related]

  • 5. Thermoelasticity of red blood cell membrane.
    Waugh R, Evans EA.
    Biophys J; 1979 Apr 14; 26(1):115-31. PubMed ID: 262408
    [Abstract] [Full Text] [Related]

  • 6. Barrier-free paths of directed protein motion in the erythrocyte plasma membrane.
    Boal DH, Boey SK.
    Biophys J; 1995 Aug 14; 69(2):372-9. PubMed ID: 8527650
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Bending undulations and elasticity of the erythrocyte membrane: effects of cell shape and membrane organization.
    Zeman K, Engelhard H, Sackmann E.
    Eur Biophys J; 1990 Aug 14; 18(4):203-19. PubMed ID: 2364914
    [Abstract] [Full Text] [Related]

  • 10. Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane.
    Li H, Lykotrafitis G.
    Biophys J; 2012 Jan 04; 102(1):75-84. PubMed ID: 22225800
    [Abstract] [Full Text] [Related]

  • 11. Cytoskeleton influence on normal and tangent fluctuation modes in the red blood cells.
    Rochal SB, Lorman VL.
    Phys Rev Lett; 2006 Jun 23; 96(24):248102. PubMed ID: 16907283
    [Abstract] [Full Text] [Related]

  • 12. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A, Parker KH.
    J Biomech Eng; 2011 Jan 23; 133(1):011007. PubMed ID: 21186897
    [Abstract] [Full Text] [Related]

  • 13. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties.
    Stokke BT, Mikkelsen A, Elgsaeter A.
    Eur Biophys J; 1986 Jan 23; 13(4):203-18. PubMed ID: 3709419
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition.
    Strey H, Peterson M, Sackmann E.
    Biophys J; 1995 Aug 23; 69(2):478-88. PubMed ID: 8527662
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
    Boey SK, Boal DH, Discher DE.
    Biophys J; 1998 Sep 23; 75(3):1573-83. PubMed ID: 9726958
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Spectrin properties and the elasticity of the red blood cell membrane skeleton.
    Hansen J, Skalak R, Chien S, Hoger A.
    Biorheology; 1997 Sep 23; 34(4-5):327-48. PubMed ID: 9578807
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.