These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. MgATP-independent hydrogen evolution catalysed by nitrogenase: an explanation for the missing electron(s) in the MgADP-AlF4 transition-state complex. Yousafzai FK, Eady RR. Biochem J; 1999 May 01; 339 ( Pt 3)(Pt 3):511-5. PubMed ID: 10215587 [Abstract] [Full Text] [Related]
8. Evidence that MgATP accelerates primary electron transfer in a Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein nitrogenase tight complex. Chan JM, Ryle MJ, Seefeldt LC. J Biol Chem; 1999 Jun 18; 274(25):17593-8. PubMed ID: 10364195 [Abstract] [Full Text] [Related]
9. Circular dichroism and x-ray spectroscopies of Azotobacter vinelandii nitrogenase iron protein. MgATP and MgADP induced protein conformational changes affecting the [4Fe-4S] cluster and characterization of a [2Fe-2S] form. Ryle MJ, Lanzilotta WN, Seefeldt LC, Scarrow RC, Jensen GM. J Biol Chem; 1996 Jan 19; 271(3):1551-7. PubMed ID: 8576152 [Abstract] [Full Text] [Related]
10. Electron transfer from the nitrogenase iron protein to the [8Fe-(7/8)S] clusters of the molybdenum-iron protein. Lanzilotta WN, Seefeldt LC. Biochemistry; 1996 Dec 24; 35(51):16770-6. PubMed ID: 8988014 [Abstract] [Full Text] [Related]
11. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Lanzilotta WN, Ryle MJ, Seefeldt LC. Biochemistry; 1995 Aug 29; 34(34):10713-23. PubMed ID: 7662655 [Abstract] [Full Text] [Related]
12. Molybdenum nitrogenase of Azotobacter chroococcum. Tight binding of MgADP to the MoFe protein. Miller RW, Eady RR. Biochem J; 1989 Nov 01; 263(3):725-9. PubMed ID: 2597127 [Abstract] [Full Text] [Related]
13. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135. Ryle MJ, Lanzilotta WN, Seefeldt LC. Biochemistry; 1996 Jul 23; 35(29):9424-34. PubMed ID: 8755721 [Abstract] [Full Text] [Related]
14. Nucleotide-assisted [Fe4S4] redox state interconversions of the Azotobacter vinelandii Fe protein and their relevance to nitrogenase catalysis. Jacobs D, Watt GD. Biochemistry; 2013 Jul 16; 52(28):4791-9. PubMed ID: 23815521 [Abstract] [Full Text] [Related]
15. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Lanzilotta WN, Parker VD, Seefeldt LC. Biochemistry; 1998 Jan 06; 37(1):399-407. PubMed ID: 9425061 [Abstract] [Full Text] [Related]
16. Formation of a tight 1:1 complex of Clostridium pasteurianum Fe protein-Azotobacter vinelandii MoFe protein: evidence for long-range interactions between the Fe protein binding sites during catalytic hydrogen evolution. Clarke TA, Maritano S, Eady RR. Biochemistry; 2000 Sep 19; 39(37):11434-40. PubMed ID: 10985789 [Abstract] [Full Text] [Related]
17. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein. Lanzilotta WN, Parker VD, Seefeldt LC. Biochim Biophys Acta; 1999 Jan 11; 1429(2):411-21. PubMed ID: 9989226 [Abstract] [Full Text] [Related]
20. Mapping the site(s) of MgATP and MgADP interaction with the nitrogenase of Azotobacter vinelandii. Lysine 15 of the iron protein plays a major role in MgATP interaction. Seefeldt LC, Morgan TV, Dean DR, Mortenson LE. J Biol Chem; 1992 Apr 05; 267(10):6680-8. PubMed ID: 1313018 [Abstract] [Full Text] [Related] Page: [Next] [New Search]