These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis. Kesseler A, Brand MD. Eur J Biochem; 1994 Nov 01; 225(3):897-906. PubMed ID: 7957227 [Abstract] [Full Text] [Related]
4. Characterisation of the control of respiration in potato tuber mitochondria using the top-down approach of metabolic control analysis. Kesseler A, Diolez P, Brinkmann K, Brand MD. Eur J Biochem; 1992 Dec 15; 210(3):775-84. PubMed ID: 1483462 [Abstract] [Full Text] [Related]
6. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Hafner RP, Brown GC, Brand MD. Eur J Biochem; 1990 Mar 10; 188(2):313-9. PubMed ID: 2156698 [Abstract] [Full Text] [Related]
9. Calcium regulation of oxidative phosphorylation in rat skeletal muscle mitochondria. Kavanagh NI, Ainscow EK, Brand MD. Biochim Biophys Acta; 2000 Feb 24; 1457(1-2):57-70. PubMed ID: 10692550 [Abstract] [Full Text] [Related]
10. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after chronic ethanol feeding. Marcinkeviciute A, Mildaziene V, Crumm S, Demin O, Hoek JB, Kholodenko B. Biochem J; 2000 Jul 15; 349(Pt 2):519-26. PubMed ID: 10880351 [Abstract] [Full Text] [Related]
11. Top-down control analysis of the effect of temperature on ectotherm oxidative phosphorylation. Chamberlin ME. Am J Physiol Regul Integr Comp Physiol; 2004 Oct 15; 287(4):R794-800. PubMed ID: 15191905 [Abstract] [Full Text] [Related]
12. Regulation of uncoupling protein activity in phosphorylating potato tuber mitochondria. Navet R, Douette P, Puttine-Marique F, Sluse-Goffart CM, Jarmuszkiewicz W, Sluse FE. FEBS Lett; 2005 Aug 15; 579(20):4437-42. PubMed ID: 16061228 [Abstract] [Full Text] [Related]
13. Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. Ivanina AV, Kurochkin IO, Leamy L, Sokolova IM. J Exp Biol; 2012 Sep 15; 215(Pt 18):3142-54. PubMed ID: 22660786 [Abstract] [Full Text] [Related]
14. Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM. Am J Physiol Regul Integr Comp Physiol; 2011 Jan 15; 300(1):R21-31. PubMed ID: 20844261 [Abstract] [Full Text] [Related]
15. Comparative effects of herbicide dicamba and related compound on plant mitochondrial bioenergetics. Peixoto F, Vicente JA, Madeira VM. J Biochem Mol Toxicol; 2003 Jan 15; 17(3):185-92. PubMed ID: 12815615 [Abstract] [Full Text] [Related]
16. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Harper ME, Brand MD. Can J Physiol Pharmacol; 1994 Aug 15; 72(8):899-908. PubMed ID: 7834578 [Abstract] [Full Text] [Related]
17. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces. Rigoulet M, Leverve X, Fontaine E, Ouhabi R, Guérin B. Mol Cell Biochem; 1998 Jul 15; 184(1-2):35-52. PubMed ID: 9746311 [Abstract] [Full Text] [Related]
18. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Roussel D, Dumas JF, Simard G, Malthièry Y, Ritz P. Biochem J; 2004 Sep 01; 382(Pt 2):491-9. PubMed ID: 15175015 [Abstract] [Full Text] [Related]