These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
836 related items for PubMed ID: 7957733
1. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages. Frisén J, Haegerstrand A, Fried K, Piehl F, Cullheim S, Risling M. Exp Neurol; 1994 Oct; 129(2):183-93. PubMed ID: 7957733 [Abstract] [Full Text] [Related]
2. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Tsai EC, Dalton PD, Shoichet MS, Tator CH. Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035 [Abstract] [Full Text] [Related]
3. Glial and axonal responses in areas of Wallerian degeneration of the corticospinal and dorsal ascending tracts after spinal cord dorsal funiculotomy. Wang L, Hu B, Wong WM, Lu P, Wu W, Xu XM. Neuropathology; 2009 Jun; 29(3):230-41. PubMed ID: 18992013 [Abstract] [Full Text] [Related]
4. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Prewitt CM, Niesman IR, Kane CJ, Houlé JD. Exp Neurol; 1997 Dec; 148(2):433-43. PubMed ID: 9417823 [Abstract] [Full Text] [Related]
5. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA. Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [Abstract] [Full Text] [Related]
6. Role of adult oligodendrocytes in remyelination after neural injury. Vick RS, Neuberger TJ, DeVries GH. J Neurotrauma; 1992 Mar; 9 Suppl 1():S93-103. PubMed ID: 1588636 [Abstract] [Full Text] [Related]
7. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury. McPhail LT, Stirling DP, Tetzlaff W, Kwiecien JM, Ramer MS. Eur J Neurosci; 2004 Oct; 20(8):1984-94. PubMed ID: 15450077 [Abstract] [Full Text] [Related]
8. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration. Zhang Z, Guth L. Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413 [Abstract] [Full Text] [Related]
9. Failure of Schwann cells as supporting cells for adult neural progenitor cell grafts in the acutely injured spinal cord. Vroemen M, Caioni M, Bogdahn U, Weidner N. Cell Tissue Res; 2007 Jan; 327(1):1-13. PubMed ID: 16941122 [Abstract] [Full Text] [Related]
10. Enhanced axonal regeneration following combined demyelination plus schwann cell transplantation therapy in the injured adult spinal cord. Keirstead HS, Morgan SV, Wilby MJ, Fawcett JW. Exp Neurol; 1999 Sep; 159(1):225-36. PubMed ID: 10486190 [Abstract] [Full Text] [Related]
11. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: the dorsal radiculotomy model. George R, Griffin JW. Exp Neurol; 1994 Oct; 129(2):225-36. PubMed ID: 7957737 [Abstract] [Full Text] [Related]
12. Systemic injections of lipopolysaccharide accelerates myelin phagocytosis during Wallerian degeneration in the injured mouse spinal cord. Vallières N, Berard JL, David S, Lacroix S. Glia; 2006 Jan 01; 53(1):103-13. PubMed ID: 16206158 [Abstract] [Full Text] [Related]
13. Characterization of non-neuronal elements within fibronectin mats implanted into the damaged adult rat spinal cord. King VR, Phillips JB, Hunt-Grubbe H, Brown R, Priestley JV. Biomaterials; 2006 Jan 01; 27(3):485-96. PubMed ID: 16102813 [Abstract] [Full Text] [Related]
14. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy. Bunge MB, Holets VR, Bates ML, Clarke TS, Watson BD. Exp Neurol; 1994 May 01; 127(1):76-93. PubMed ID: 8200439 [Abstract] [Full Text] [Related]
15. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Fitch MT, Silver J. Exp Neurol; 1997 Dec 01; 148(2):587-603. PubMed ID: 9417835 [Abstract] [Full Text] [Related]
16. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. Houlé JD, Reier PJ. J Comp Neurol; 1988 Mar 22; 269(4):535-47. PubMed ID: 2453536 [Abstract] [Full Text] [Related]
17. Differential responses of spinal axons to transection: influence of the NG2 proteoglycan. de Castro R, Tajrishi R, Claros J, Stallcup WB. Exp Neurol; 2005 Apr 22; 192(2):299-309. PubMed ID: 15755547 [Abstract] [Full Text] [Related]
18. Regeneration of brainstem-spinal axons after lesion and immunological disruption of myelin in adult rat. Dyer JK, Bourque JA, Steeves JD. Exp Neurol; 1998 Nov 22; 154(1):12-22. PubMed ID: 9875263 [Abstract] [Full Text] [Related]
19. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Buss A, Brook GA, Kakulas B, Martin D, Franzen R, Schoenen J, Noth J, Schmitt AB. Brain; 2004 Jan 22; 127(Pt 1):34-44. PubMed ID: 14534158 [Abstract] [Full Text] [Related]
20. Increases in collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rat. Prendergast J, Stelzner DJ. J Comp Neurol; 1976 Mar 15; 166(2):145-61. PubMed ID: 1262552 [Abstract] [Full Text] [Related] Page: [Next] [New Search]