These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 7961182
1. Tuned hair cells for hearing, but tuned basilar membrane for overload protection: evidence from dolphins, bats, and desert rodents. Braun M. Hear Res; 1994 Jul; 78(1):98-114. PubMed ID: 7961182 [Abstract] [Full Text] [Related]
2. Amplification and Suppression of Traveling Waves along the Mouse Organ of Corti: Evidence for Spatial Variation in the Longitudinal Coupling of Outer Hair Cell-Generated Forces. Dewey JB, Applegate BE, Oghalai JS. J Neurosci; 2019 Mar 06; 39(10):1805-1816. PubMed ID: 30651330 [Abstract] [Full Text] [Related]
3. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions. Nuttall AL, Ren T. Hear Res; 1995 Dec 06; 92(1-2):170-7. PubMed ID: 8647740 [Abstract] [Full Text] [Related]
4. Vibration of the organ of Corti within the cochlear apex in mice. Gao SS, Wang R, Raphael PD, Moayedi Y, Groves AK, Zuo J, Applegate BE, Oghalai JS. J Neurophysiol; 2014 Sep 01; 112(5):1192-204. PubMed ID: 24920025 [Abstract] [Full Text] [Related]
5. A model of cochlear micromechanics. Fukazawa T. Hear Res; 1997 Nov 01; 113(1-2):182-90. PubMed ID: 9387997 [Abstract] [Full Text] [Related]
6. Impediment of basilar membrane motion reduces overload protection but not threshold sensitivity: evidence from clinical and experimental hydrops. Braun M. Hear Res; 1996 Aug 01; 97(1-2):1-10. PubMed ID: 8844181 [Abstract] [Full Text] [Related]
7. Comparative aspects of cochlear functional organization in mammals. Vater M, Kössl M. Hear Res; 2011 Mar 01; 273(1-2):89-99. PubMed ID: 20630478 [Abstract] [Full Text] [Related]
8. The radial pattern of basilar membrane motion evoked by electric stimulation of the cochlea. Nuttall AL, Guo M, Ren T. Hear Res; 1999 May 01; 131(1-2):39-46. PubMed ID: 10355603 [Abstract] [Full Text] [Related]
9. Two-Dimensional Cochlear Micromechanics Measured In Vivo Demonstrate Radial Tuning within the Mouse Organ of Corti. Lee HY, Raphael PD, Xia A, Kim J, Grillet N, Applegate BE, Ellerbee Bowden AK, Oghalai JS. J Neurosci; 2016 Aug 03; 36(31):8160-73. PubMed ID: 27488636 [Abstract] [Full Text] [Related]
10. Loud sound-induced changes in cochlear mechanics. Fridberger A, Zheng J, Parthasarathi A, Ren T, Nuttall A. J Neurophysiol; 2002 Nov 03; 88(5):2341-8. PubMed ID: 12424275 [Abstract] [Full Text] [Related]
11. Minimal basilar membrane motion in low-frequency hearing. Warren RL, Ramamoorthy S, Ciganović N, Zhang Y, Wilson TM, Petrie T, Wang RK, Jacques SL, Reichenbach T, Nuttall AL, Fridberger A. Proc Natl Acad Sci U S A; 2016 Jul 26; 113(30):E4304-10. PubMed ID: 27407145 [Abstract] [Full Text] [Related]
12. Basilar membrane velocity noise. Nuttall AL, Guo M, Ren T, Dolan DF. Hear Res; 1997 Dec 26; 114(1-2):35-42. PubMed ID: 9447916 [Abstract] [Full Text] [Related]
13. Consequences of Location-Dependent Organ of Corti Micro-Mechanics. Liu Y, Gracewski SM, Nam JH. PLoS One; 2015 Dec 26; 10(8):e0133284. PubMed ID: 26317521 [Abstract] [Full Text] [Related]
14. Feed-forward and feed-backward amplification model from cochlear cytoarchitecture: an interspecies comparison. Yoon YJ, Steele CR, Puria S. Biophys J; 2011 Jan 05; 100(1):1-10. PubMed ID: 21190651 [Abstract] [Full Text] [Related]
15. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification. Murakoshi M, Suzuki S, Wada H. Biomed Res Int; 2015 Jan 05; 2015():727434. PubMed ID: 26295049 [Abstract] [Full Text] [Related]
16. A ratchet mechanism for amplification in low-frequency mammalian hearing. Reichenbach T, Hudspeth AJ. Proc Natl Acad Sci U S A; 2010 Mar 16; 107(11):4973-8. PubMed ID: 20194771 [Abstract] [Full Text] [Related]