These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
215 related items for PubMed ID: 7967674
1. Chronic nonpulsatile blood flow. I. Cerebral autoregulation in chronic nonpulsatile biventricular bypass: carotid blood flow response to hypercapnia. Tominaga R, Smith WA, Massiello A, Harasaki H, Golding LA. J Thorac Cardiovasc Surg; 1994 Nov; 108(5):907-12. PubMed ID: 7967674 [Abstract] [Full Text] [Related]
2. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Ševerdija EE, Gommer ED, Weerwind PW, Reulen JP, Mess WH, Maessen JG. Med Biol Eng Comput; 2015 Mar; 53(3):195-203. PubMed ID: 25412609 [Abstract] [Full Text] [Related]
3. Invited letter concerning: cerebral blood flow, carbon dioxide, and pH. Jonas RA. J Thorac Cardiovasc Surg; 1994 Nov; 108(5):984-5. PubMed ID: 7967684 [No Abstract] [Full Text] [Related]
4. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease. Gravlee GP, Roy RC, Stump DA, Hudspeth AS, Rogers AT, Prough DS. J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599 [Abstract] [Full Text] [Related]
6. Experimental study of cerebral autoregulation during cardiopulmonary bypass with or without pulsatile perfusion. Sadahiro M, Haneda K, Mohri H. J Thorac Cardiovasc Surg; 1994 Sep; 108(3):446-54. PubMed ID: 8078337 [Abstract] [Full Text] [Related]
7. The relation between pump flow rate and pulsatility on cerebral hemodynamics during pediatric cardiopulmonary bypass. Chow G, Roberts IG, Edwards AD, Lloyd-Thomas A, Wade A, Elliott MJ, Kirkham FJ. J Thorac Cardiovasc Surg; 1997 Oct; 114(4):568-77. PubMed ID: 9338642 [Abstract] [Full Text] [Related]
8. Chronic nonpulsatile blood flow. II. Hemodynamic responses to progressive exercise in calves with chronic nonpulsatile biventricular bypass. Tominaga R, Smith W, Massiello A, Harasaki H, Golding LA. J Thorac Cardiovasc Surg; 1996 Apr; 111(4):857-62. PubMed ID: 8614147 [Abstract] [Full Text] [Related]
9. Chronic nonpulsatile blood flow. III. Effects of pump flow rate on oxygen transport and utilization in chronic nonpulsatile biventricular bypass. Tominaga R, Smith W, Massiello A, Harasaki H, Golding LA. J Thorac Cardiovasc Surg; 1996 Apr; 111(4):863-72. PubMed ID: 8614148 [Abstract] [Full Text] [Related]
10. Cerebral perfusion during canine hypothermic cardiopulmonary bypass: effect of arterial carbon dioxide tension. Johnston WE, Vinten-Johansen J, DeWitt DS, O'Steen WK, Stump DA, Prough DS. Ann Thorac Surg; 1991 Sep; 52(3):479-89. PubMed ID: 1910323 [Abstract] [Full Text] [Related]
11. Cardiopulmonary bypass time does not affect cerebral blood flow. Croughwell ND, Reves JG, White WD, Grocott HP, Baldwin BI, Clements FM, Davis RD, Jones RH, Newman MF. Ann Thorac Surg; 1998 May; 65(5):1226-30. PubMed ID: 9594842 [Abstract] [Full Text] [Related]
12. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension. Brassard P, Kim YS, van Lieshout J, Secher NH, Rosenmeier JB. Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190 [Abstract] [Full Text] [Related]
13. Dissociation between cerebral autoregulation and carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass. Lundar T, Lindegaard KF, Frøysaker T, Aaslid R, Grip A, Nornes H. Ann Thorac Surg; 1985 Dec; 40(6):582-7. PubMed ID: 3935068 [Abstract] [Full Text] [Related]
14. Differences in cerebral blood flow between alpha-stat and pH-stat management are eliminated during periods of decreased systemic flow and pressure. A study during cardiopulmonary bypass in rabbits. Hindman BJ, Funatsu N, Harrington J, Cutkomp J, Miller T, Todd MM, Tinker JH. Anesthesiology; 1991 Jun; 74(6):1096-102. PubMed ID: 1904205 [Abstract] [Full Text] [Related]
15. Cerebral carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass. Lundar T, Lindegaard KF, Frøysaker T, Grip A, Bergman M, Am-Holen E, Nornes H. Ann Thorac Surg; 1986 May; 41(5):525-30. PubMed ID: 3085604 [Abstract] [Full Text] [Related]
16. Carbon dioxide--a complex gas in a complex circulation: its effects on systemic hemodynamics and oxygen transport, cerebral, and splanchnic circulation in neonates after the Norwood procedure. Li J, Zhang G, Holtby H, Bissonnette B, Wang G, Redington AN, Van Arsdell GS. J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1207-14. PubMed ID: 19026805 [Abstract] [Full Text] [Related]
17. Cerebral blood flow response to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in children. Kern FH, Ungerleider RM, Quill TJ, Baldwin B, White WD, Reves JG, Greeley WJ. J Thorac Cardiovasc Surg; 1991 Apr; 101(4):618-22. PubMed ID: 2008099 [Abstract] [Full Text] [Related]
18. Cerebrovascular and cerebral metabolic effects of alterations in perfusion flow rate during hypothermic cardiopulmonary bypass in man. Rogers AT, Prough DS, Roy RC, Gravlee GP, Stump DA, Cordell AR, Phipps J, Taylor CL. J Thorac Cardiovasc Surg; 1992 Feb; 103(2):363-8. PubMed ID: 1736002 [Abstract] [Full Text] [Related]
19. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass. Croughwell N, Smith LR, Quill T, Newman M, Greeley W, Kern F, Lu J, Reves JG. J Thorac Cardiovasc Surg; 1992 Mar; 103(3):549-54. PubMed ID: 1545554 [Abstract] [Full Text] [Related]
20. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Govier AV, Reves JG, McKay RD, Karp RB, Zorn GL, Morawetz RB, Smith LR, Adams M, Freeman AM. Ann Thorac Surg; 1984 Dec; 38(6):592-600. PubMed ID: 6439135 [Abstract] [Full Text] [Related] Page: [Next] [New Search]