These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
177 related items for PubMed ID: 7974482
1. Dose-dependent metabolism of 2,2-dichloro-1,1,1-trifluoroethane: a physiologically based pharmacokinetic model in the male Fischer 344 rat. Vinegar A, Williams RJ, Fisher JW, McDougal JN. Toxicol Appl Pharmacol; 1994 Nov; 129(1):103-13. PubMed ID: 7974482 [Abstract] [Full Text] [Related]
2. Rat to human extrapolation of HCFC-123 kinetics deduced from halothane kinetics: a corollary approach to physiologically based pharmacokinetic modeling. Williams RJ, Vinegar A, McDougal JN, Jarabek AM, Fisher JW. Fundam Appl Toxicol; 1996 Mar; 30(1):55-66. PubMed ID: 8812223 [Abstract] [Full Text] [Related]
3. Gas-uptake pharmacokinetics of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123). Loizou GD, Urban G, Dekant W, Anders MW. Drug Metab Dispos; 1994 Mar; 22(4):511-7. PubMed ID: 7956723 [Abstract] [Full Text] [Related]
4. Use of a physiologically based model to predict systemic uptake and respiratory elimination of perchloroethylene. Dallas CE, Muralidhara S, Chen XM, Ramanathan R, Varkonyi P, Gallo JM, Bruckner JV. Toxicol Appl Pharmacol; 1994 Sep; 128(1):60-8. PubMed ID: 8079355 [Abstract] [Full Text] [Related]
5. Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation. Harris JW, Jones JP, Martin JL, LaRosa AC, Olson MJ, Pohl LR, Anders MW. Chem Res Toxicol; 1992 Sep; 5(5):720-5. PubMed ID: 1446014 [Abstract] [Full Text] [Related]
6. A comparison of physiologically based pharmacokinetic model predictions and experimental data for inhaled ethanol in male and female B6C3F1 mice, F344 rats, and humans. Pastino GM, Asgharian B, Roberts K, Medinsky MA, Bond JA. Toxicol Appl Pharmacol; 1997 Jul; 145(1):147-57. PubMed ID: 9221833 [Abstract] [Full Text] [Related]
7. PBPK models in risk assessment--A focus on chloroprene. DeWoskin RS. Chem Biol Interact; 2007 Mar 20; 166(1-3):352-9. PubMed ID: 17324392 [Abstract] [Full Text] [Related]
8. Metabolism of 1,1-dichloro-2,2,2-trifluoroethane in rats. Urban G, Dekant W. Xenobiotica; 1994 Sep 20; 24(9):881-92. PubMed ID: 7810170 [Abstract] [Full Text] [Related]
9. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats. Krishnan K, Crouse LC, Bazar MA, Major MA, Reddy G. J Appl Toxicol; 2009 Oct 20; 29(7):629-37. PubMed ID: 19629953 [Abstract] [Full Text] [Related]
10. Gas-uptake pharmacokinetics and biotransformation of 1,1-dichloro-1-fluoroethane (HCFC-141b). Loizou GD, Anders MW. Drug Metab Dispos; 1993 Oct 20; 21(4):634-9. PubMed ID: 8104122 [Abstract] [Full Text] [Related]
11. Gas-uptake pharmacokinetics and metabolism of 2-chloro-1,1,1,2-tetrafluoroethane (HCFC-124) in the rat, mouse, and hamster. Loizou GD, Anders MW. Drug Metab Dispos; 1995 Aug 20; 23(8):875-80. PubMed ID: 7493556 [Abstract] [Full Text] [Related]
12. Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Tardif R, Charest-Tardif G, Brodeur J, Krishnan K. Toxicol Appl Pharmacol; 1997 May 20; 144(1):120-34. PubMed ID: 9169076 [Abstract] [Full Text] [Related]
13. Development of physiologically based pharmacokinetic model for methyl tertiary-butyl ether and tertiary-butanol in male Fisher-344 rats. Borghoff SJ, Murphy JE, Medinsky MA. Fundam Appl Toxicol; 1996 Apr 20; 30(2):264-75. PubMed ID: 8812274 [Abstract] [Full Text] [Related]
14. Applications of sensitivity analysis to a physiologically based pharmacokinetic model for carbon tetrachloride in rats. Evans MV, Crank WD, Yang HM, Simmons JE. Toxicol Appl Pharmacol; 1994 Sep 20; 128(1):36-44. PubMed ID: 8079352 [Abstract] [Full Text] [Related]
15. Potentiation of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123)-induced liver toxicity by ethanol in guinea-pigs. Hoet P, Buchet JP, Sempoux C, Haufroid V, Rahier J, Lison D. Arch Toxicol; 2002 Dec 20; 76(12):707-14. PubMed ID: 12451447 [Abstract] [Full Text] [Related]
16. Toxicokinetics of inhaled propylene in mouse, rat, and human. Filser JG, Schmidbauer R, Rampf F, Baur CM, Pütz C, Csanády GA. Toxicol Appl Pharmacol; 2000 Nov 15; 169(1):40-51. PubMed ID: 11076695 [Abstract] [Full Text] [Related]
17. A physiologically based pharmacokinetic (PB/PK) model for multiple exposure routes of soman in multiple species. Sweeney RE, Langenberg JP, Maxwell DM. Arch Toxicol; 2006 Nov 15; 80(11):719-31. PubMed ID: 16718492 [Abstract] [Full Text] [Related]
18. Physiologically based pharmacokinetic modeling of inhaled trichloroethylene and its oxidative metabolites in B6C3F1 mice. Greenberg MS, Burton GA, Fisher JW. Toxicol Appl Pharmacol; 1999 Feb 01; 154(3):264-78. PubMed ID: 9931286 [Abstract] [Full Text] [Related]
19. Metabolism and pharmacokinetics of selected halon replacement candidates. Dodd DE, Brashear WT, Vinegar A. Toxicol Lett; 1993 May 01; 68(1-2):37-47. PubMed ID: 8516773 [Abstract] [Full Text] [Related]
20. Effects of HCFC-123 exposure to maternal and infant rhesus monkeys on hepatic biochemistry, lactational parameters and postnatal growth. Cappon GD, Keller DA, Brock WJ, Slauter RW, Hurtt ME. Drug Chem Toxicol; 2002 Nov 01; 25(4):481-96. PubMed ID: 12378954 [Abstract] [Full Text] [Related] Page: [Next] [New Search]