These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


157 related items for PubMed ID: 7974708

  • 1. Quantitation of residual white cells in filtered blood components by polymerase chain reaction amplification of HLA DQ-A DNA.
    Lee TH, Stromberg RR, Heitman J, Tran K, Busch MP.
    Transfusion; 1994; 34(11):986-94. PubMed ID: 7974708
    [Abstract] [Full Text] [Related]

  • 2. Quantitation of white cell subpopulations by polymerase chain reaction using frozen whole-blood samples. Viral Activation Transfusion Study.
    Lee TH, Sakahara NS, Fiebig EW, Hirschkorn DF, Johnson DK, Busch MP.
    Transfusion; 1998 Mar; 38(3):262-70. PubMed ID: 9563406
    [Abstract] [Full Text] [Related]

  • 3. Quantitation of residual WBCs in filtered blood components by high-throughput, real-time kinetic PCR.
    Lee TH, Wen L, Chrebtow V, Higuchi R, Watson RM, Sninsky JJ, Busch MP.
    Transfusion; 2002 Jan; 42(1):87-93. PubMed ID: 11896318
    [Abstract] [Full Text] [Related]

  • 4. Microdroplet fluorochromatic assay for the enumeration of white cells (WBCs) in WBC-reduced blood components: validation and application for evaluating newly developed WBC-reduction filters.
    Borzini P, Dumont LJ.
    Transfusion; 1997 Jun; 37(6):601-6. PubMed ID: 9191820
    [Abstract] [Full Text] [Related]

  • 5. DNA enzyme immunoassay of the PCR-amplified HLA-DQ alpha gene for estimating residual leukocytes in filtered blood.
    Prati D, Rawal BD, Dang C, Capelli C, Vyas GN.
    Clin Diagn Lab Immunol; 1995 Mar; 2(2):182-5. PubMed ID: 7697526
    [Abstract] [Full Text] [Related]

  • 6. Real-time amplification of HLA-DQA1 for counting residual white blood cells in filtered platelet concentrates.
    Mohammadi T, Reesink HW, Vandenbroucke-Grauls CM, Savelkoul PH.
    Transfusion; 2004 Sep; 44(9):1314-8. PubMed ID: 15318854
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effectiveness of two synthetic fiber filters for removing white cells from AS-1 red cells.
    Pikul FJ, Farrar RP, Boris MB, Estok L, Marlo D, Wildgen M, Chaplin H.
    Transfusion; 1989 Sep; 29(7):590-5. PubMed ID: 2505411
    [Abstract] [Full Text] [Related]

  • 15. A multicenter study on the efficiency of white cell reduction by filtration of red cells.
    Masse M, Andreu G, Angue M, Babault C, Beaujean F, Bidet ML, Boudart D, Calot JP, Cotte C, Follea G.
    Transfusion; 1991 Sep; 31(9):792-7. PubMed ID: 1755082
    [Abstract] [Full Text] [Related]

  • 16. WBC reduction in cryopreserved RBC units.
    Arnaud FG, Meryman HT.
    Transfusion; 2003 Apr; 43(4):517-25. PubMed ID: 12662286
    [Abstract] [Full Text] [Related]

  • 17. A multicenter evaluation of the routine use of a new white cell-reduction apheresis system for collection of platelets.
    Fournel JJ, Zingsem J, Riggert J, Muylle L, Müller N, Köhler M, Beaumont JL, Baeten M, Eckstein R, van Waeg G.
    Transfusion; 1997 May; 37(5):487-92. PubMed ID: 9149772
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.