These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 7985785

  • 1. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors.
    Karlsson R.
    Anal Biochem; 1994 Aug 15; 221(1):142-51. PubMed ID: 7985785
    [Abstract] [Full Text] [Related]

  • 2. Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities.
    Karlsson R, Ståhlberg R.
    Anal Biochem; 1995 Jul 01; 228(2):274-80. PubMed ID: 8572306
    [Abstract] [Full Text] [Related]

  • 3. Application of surface plasmon resonance toward studies of low-molecular-weight antigen-antibody binding interactions.
    Adamczyk M, Moore JA, Yu Z.
    Methods; 2000 Mar 01; 20(3):319-28. PubMed ID: 10694454
    [Abstract] [Full Text] [Related]

  • 4. Real-time observation of affinity reactions using grating couplers: determination of the detection limit and calculation of kinetic rate constants.
    Polzius R, Diessel E, Bier FF, Bilitewski U.
    Anal Biochem; 1997 Jun 01; 248(2):269-76. PubMed ID: 9177754
    [Abstract] [Full Text] [Related]

  • 5. Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance.
    Cheskis B, Freedman LP.
    Biochemistry; 1996 Mar 12; 35(10):3309-18. PubMed ID: 8605168
    [Abstract] [Full Text] [Related]

  • 6. Studies of interactions with weak affinities and low-molecular-weight compounds using surface plasmon resonance technology.
    Strandh M, Persson B, Roos H, Ohlson S.
    J Mol Recognit; 1998 Mar 12; 11(1-6):188-90. PubMed ID: 10076837
    [Abstract] [Full Text] [Related]

  • 7. Binding affinity and kinetic analysis of nuclear receptor/co-regulator interactions using surface plasmon resonance.
    Lavery DN.
    Methods Mol Biol; 2009 Mar 12; 505():171-86. PubMed ID: 19117145
    [Abstract] [Full Text] [Related]

  • 8. Synthetic peptide vaccine development: measurement of polyclonal antibody affinity and cross-reactivity using a new peptide capture and release system for surface plasmon resonance spectroscopy.
    Cachia PJ, Kao DJ, Hodges RS.
    J Mol Recognit; 2004 Mar 12; 17(6):540-57. PubMed ID: 15386623
    [Abstract] [Full Text] [Related]

  • 9. Antigen-antibody binding and mass transport by convection and diffusion to a surface: a two-dimensional computer model of binding and dissociation kinetics.
    Glaser RW.
    Anal Biochem; 1993 Aug 15; 213(1):152-61. PubMed ID: 8238868
    [Abstract] [Full Text] [Related]

  • 10. Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS).
    Nelson RW, Krone JR.
    J Mol Recognit; 1999 Aug 15; 12(2):77-93. PubMed ID: 10398399
    [Abstract] [Full Text] [Related]

  • 11. Affinity constants for small molecules from SPR competition experiments.
    de Mol NJ.
    Methods Mol Biol; 2010 Aug 15; 627():101-11. PubMed ID: 20217616
    [Abstract] [Full Text] [Related]

  • 12. Convection, diffusion and reaction in a surface-based biosensor: modeling of cooperativity and binding site competition on the surface and in the hydrogel.
    Lebedev K, Mafé S, Stroeve P.
    J Colloid Interface Sci; 2006 Apr 15; 296(2):527-37. PubMed ID: 16359694
    [Abstract] [Full Text] [Related]

  • 13. Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine2A and 5-hydroxytryptamine2C receptors: direct and indirect effects on ligand affinity mediated by the same locus.
    Almaula N, Ebersole BJ, Ballesteros JA, Weinstein H, Sealfon SC.
    Mol Pharmacol; 1996 Jul 15; 50(1):34-42. PubMed ID: 8700116
    [Abstract] [Full Text] [Related]

  • 14. A Predictive Approach Using Fractal Analysis for Analyte-Receptor Binding and Dissociation Kinetics for Surface Plasmon Resonance Biosensor Applications.
    Ramakrishnan A, Sadana A.
    J Colloid Interface Sci; 2000 Sep 15; 229(2):628-640. PubMed ID: 10985845
    [Abstract] [Full Text] [Related]

  • 15. Determination of binding constants by equilibrium titration with circulating sample in a surface plasmon resonance biosensor.
    Schuck P, Millar DB, Kortt AA.
    Anal Biochem; 1998 Dec 01; 265(1):79-91. PubMed ID: 9866711
    [Abstract] [Full Text] [Related]

  • 16. Studies of protein interactions by biosensor technology: an alternative approach to the analysis of sensorgrams deviating from pseudo-first-order kinetic behavior.
    Bowles MR, Hall DR, Pond SM, Winzor DJ.
    Anal Biochem; 1997 Jan 01; 244(1):133-43. PubMed ID: 9025919
    [Abstract] [Full Text] [Related]

  • 17. Analysis of A-kinase anchoring protein (AKAP) interaction with protein kinase A (PKA) regulatory subunits: PKA isoform specificity in AKAP binding.
    Herberg FW, Maleszka A, Eide T, Vossebein L, Tasken K.
    J Mol Biol; 2000 Apr 28; 298(2):329-39. PubMed ID: 10764601
    [Abstract] [Full Text] [Related]

  • 18. A Single and a Dual-Fractal Analysis of Analyte-Receptor Binding Kinetics for Surface Plasmon Resonance Biosensor Applications.
    Ramakrishnan A, Sadana A.
    J Colloid Interface Sci; 1999 May 15; 213(2):465-478. PubMed ID: 10222088
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of alpha-D-mannopyranoside glycolipid micelles-lectin interactions by surface plasmon resonance method.
    Murthy BN, Voelcker NH, Jayaraman N.
    Glycobiology; 2006 Sep 15; 16(9):822-32. PubMed ID: 16782825
    [Abstract] [Full Text] [Related]

  • 20. Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions.
    Heegaard NH, Kennedy RT.
    Electrophoresis; 1999 Oct 15; 20(15-16):3122-33. PubMed ID: 10596820
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.