These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


81 related items for PubMed ID: 7986813

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. The interaction of Triton X-100 with purple membranes. Detergent binding, spectral changes and membrane solubilization.
    González-Mañas JM, Virto MD, Gurtubay JI, Goñi FM.
    Eur J Biochem; 1990 Mar 30; 188(3):673-8. PubMed ID: 2331990
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Membrane solubilization by the non-ionic detergent triton X-100. A comparative study including model and cell membranes.
    Macarulla JM, Alonso A, Arrondo JL, González-Mañas JM, Goñi FM, Gurtubay JI, Prado A, Urbaneja MA.
    Rev Esp Fisiol; 1989 Mar 30; 45 Suppl():1-8. PubMed ID: 2641811
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Triton X-100 solubilization of mitochondrial inner and outer membranes.
    Gurtubay JI, Goñi FM, Gómez-Fernández JC, Otamendi JJ, Macarulla JM.
    J Bioenerg Biomembr; 1980 Apr 30; 12(1-2):47-70. PubMed ID: 7410344
    [Abstract] [Full Text] [Related]

  • 7. A new "gel-like" phase in dodecyl maltoside-lipid mixtures: implications in solubilization and reconstitution studies.
    Lambert O, Levy D, Ranck JL, Leblanc G, Rigaud JL.
    Biophys J; 1998 Feb 30; 74(2 Pt 1):918-30. PubMed ID: 9533703
    [Abstract] [Full Text] [Related]

  • 8. Phospholipid solubilization during detergent extraction of rhodopsin from photoreceptor disk membranes.
    Aveldaño MI.
    Arch Biochem Biophys; 1995 Dec 20; 324(2):331-43. PubMed ID: 8554325
    [Abstract] [Full Text] [Related]

  • 9. Kinetic studies on the interaction of phosphatidylcholine liposomes with Triton X-100.
    Alonso A, Urbaneja MA, Goñi FM, Carmona FG, Cánovas FG, Gómez-Fernández JC.
    Biochim Biophys Acta; 1987 Aug 20; 902(2):237-46. PubMed ID: 3620459
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. The mechanism of detergent solubilization of liposomes and protein-containing membranes.
    Kragh-Hansen U, le Maire M, Møller JV.
    Biophys J; 1998 Dec 20; 75(6):2932-46. PubMed ID: 9826614
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena.
    Ahyayauch H, Bennouna M, Alonso A, Goñi FM.
    Langmuir; 2010 May 18; 26(10):7307-13. PubMed ID: 20170131
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The effects of diverse proteins on the solubilization of various hydrophobic probes by protein.detergent complexes.
    Birdi KS, Steinhardt J.
    Biochim Biophys Acta; 1978 Jun 21; 534(2):219-27. PubMed ID: 667100
    [Abstract] [Full Text] [Related]

  • 19. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.
    Rodi PM, Bocco Gianello MD, Corregido MC, Gennaro AM.
    Biochim Biophys Acta; 2014 Mar 21; 1838(3):859-66. PubMed ID: 24239862
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.