These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
152 related items for PubMed ID: 7991221
1. Energy related metabolic alterations in diaphragm muscle resulting from acute methomyl toxicity. Gupta RC, Goad JT, Kadel WL. Neurotoxicology; 1994; 15(2):321-30. PubMed ID: 7991221 [Abstract] [Full Text] [Related]
2. Cholinergic and noncholinergic changes in skeletal muscles by carbofuran and methyl parathion. Gupta RC, Goad JT, Kadel WL. J Toxicol Environ Health; 1994 Nov; 43(3):291-304. PubMed ID: 7966439 [Abstract] [Full Text] [Related]
3. Involvement of nitric oxide in myotoxicity produced by diisopropylphosphorofluoridate (DFP)-induced muscle hyperactivity. Gupta RC, Milatovic D, Dettbarn WD. Arch Toxicol; 2002 Dec; 76(12):715-26. PubMed ID: 12451448 [Abstract] [Full Text] [Related]
4. Carbofuran-induced alterations (in vivo) in high-energy phosphates, creatine kinase (CK) and CK isoenzymes. Gupta RC, Goad JT, Kadel WL. Arch Toxicol; 1991 Dec; 65(4):304-10. PubMed ID: 1953349 [Abstract] [Full Text] [Related]
5. Necessity of newly synthesized ATP by creatine kinase for contraction of permeabilized longitudinal muscle preparations of rat proximal colon. Takeuchi T, Fujita A, Ishii T, Nishio H, Hata F. J Pharmacol Exp Ther; 1995 Oct; 275(1):429-34. PubMed ID: 7562581 [Abstract] [Full Text] [Related]
6. The role of phosphocreatine and ATP in contraction of normal and ischemic heart. Kupriyanov VV, Lakomkin VL, Steinschneider AYa, Novikova NA, Severina MYu, Kapelko VI, Saks VA. Biomed Biochim Acta; 1987 Oct; 46(8-9):S493-8. PubMed ID: 3435507 [Abstract] [Full Text] [Related]
7. Role of high-energy phosphates and their metabolites in protection of carbofuran-induced biochemical changes in diaphragm muscle by memantine. Gupta RC, Goad JT. Arch Toxicol; 2000 Mar; 74(1):13-20. PubMed ID: 10817662 [Abstract] [Full Text] [Related]
9. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture. Seraydarian MW. Recent Adv Stud Cardiac Struct Metab; 1975 May; 8():181-90. PubMed ID: 1215636 [Abstract] [Full Text] [Related]
10. Effect of ischemic preconditioning on mitochondrial oxidative phosphorylation and high energy phosphates in rat hearts. Kobara M, Tatsumi T, Matoba S, Yamahara Y, Nakagawa C, Ohta B, Matsumoto T, Inoue D, Asayama J, Nakagawa M. J Mol Cell Cardiol; 1996 Feb; 28(2):417-28. PubMed ID: 8729072 [Abstract] [Full Text] [Related]
11. The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia. Morris S, van Aardt WJ, Ahern MD. Aquat Toxicol; 2005 Oct 05; 75(1):16-31. PubMed ID: 16083977 [Abstract] [Full Text] [Related]
12. Seizure-induced changes in energy metabolites and effects of N-tert-butyl-alpha-phenylnitrone (PNB) and vitamin E in rats. Gupta RC, Milatovic D, Zivin M, Dettbarn WD. Pflugers Arch; 2000 Oct 05; 440(5 Suppl):R160-2. PubMed ID: 11005654 [Abstract] [Full Text] [Related]
13. Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-Héron B, Sagniez M, Rossi A, Noireaud J. J Mol Cell Cardiol; 1997 Jul 05; 29(7):1903-13. PubMed ID: 9236144 [Abstract] [Full Text] [Related]
14. The use of insulin and glucose during resuscitation from hemorrhagic shock increases hepatic ATP. Chang CG, Van Way CW, Dhar A, Helling T, Hahn Y. J Surg Res; 2000 Aug 05; 92(2):171-6. PubMed ID: 10896818 [Abstract] [Full Text] [Related]
15. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats. Chanseaume E, Bielicki G, Tardy AL, Renou JP, Freyssenet D, Boirie Y, Morio B. Obesity (Silver Spring); 2008 Mar 05; 16(3):572-7. PubMed ID: 18239558 [Abstract] [Full Text] [Related]
16. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens. Obrosova IG, Stevens MJ. Invest Ophthalmol Vis Sci; 1999 Mar 05; 40(3):680-8. PubMed ID: 10067971 [Abstract] [Full Text] [Related]
17. Glucagon effect on postischemic recovery of intestinal energy metabolism. Schneider JR, Foker JE, Macnab JR, Marquardt CA, Cronenwett JL. J Surg Res; 1994 Feb 05; 56(2):123-9. PubMed ID: 8121167 [Abstract] [Full Text] [Related]
18. Effect of repeated +Gz exposures on energy metabolism and some ion contents in brain tissues of rats. Sun XQ, Zhang LF, Wu XY, Jiang SZ. Aviat Space Environ Med; 2001 May 05; 72(5):422-6. PubMed ID: 11346006 [Abstract] [Full Text] [Related]
19. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants. Gupta RC, Milatovic D, Dettbarn WD. Neurotoxicology; 2001 Apr 05; 22(2):271-82. PubMed ID: 11405258 [Abstract] [Full Text] [Related]
20. Induction of endotoxin tolerance in transgenic mouse liver expressing creatine kinase. Hatano E, Tanaka A, Iwata S, Satoh S, Kitai T, Tsunekawa S, Inomoto T, Shinohara H, Chance B, Yamaoka Y. Hepatology; 1996 Sep 05; 24(3):663-9. PubMed ID: 8781340 [Abstract] [Full Text] [Related] Page: [Next] [New Search]