These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1088 related items for PubMed ID: 8001456
1. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Celeda D, Aldinger K, Haar FM, Hausmann M, Durm M, Ludwig H, Cremer C. Cytometry; 1994 Sep 01; 17(1):13-25. PubMed ID: 8001456 [Abstract] [Full Text] [Related]
2. A rapid FISH technique for quantitative microscopy. Haar FM, Durm M, Aldinger K, Celeda D, Hausmann M, Ludwig H, Cremer C. Biotechniques; 1994 Aug 01; 17(2):346-8, 350-3. PubMed ID: 7980939 [Abstract] [Full Text] [Related]
3. Quantification of inter- and intra-nuclear variation of fluorescence in situ hybridization signals. Nederlof PM, van der Flier S, Raap AK, Tanke HJ. Cytometry; 1992 Aug 01; 13(8):831-8. PubMed ID: 1459000 [Abstract] [Full Text] [Related]
4. Quantification of fluorescence in situ hybridization signals by image cytometry. Nederlof PM, van der Flier S, Verwoerd NP, Vrolijk J, Raap AK, Tanke HJ. Cytometry; 1992 Aug 01; 13(8):846-52. PubMed ID: 1459002 [Abstract] [Full Text] [Related]
5. Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy. Nederlof PM, van der Flier S, Vrolijk J, Tanke HJ, Raap AK. Cytometry; 1992 Aug 01; 13(8):839-45. PubMed ID: 1459001 [Abstract] [Full Text] [Related]
6. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. Iourov IY, Soloviev IV, Vorsanova SG, Monakhov VV, Yurov YB. J Histochem Cytochem; 2005 Mar 01; 53(3):401-8. PubMed ID: 15750029 [Abstract] [Full Text] [Related]
7. Quantitation and mapping of integrated human papillomavirus on human metaphase chromosomes using a fluorescence microscope imaging system. Callahan DE, Karim A, Zheng G, Tso PO, Lesko SA. Cytometry; 1992 Mar 01; 13(5):453-61. PubMed ID: 1321707 [Abstract] [Full Text] [Related]
8. Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicolor fluorescent in situ hybridization to lymphocyte interphase nuclei. van Dekken H, Arkesteijn GJ, Visser JW, Bauman JG. Cytometry; 1990 Mar 01; 11(1):153-64. PubMed ID: 2307056 [Abstract] [Full Text] [Related]
9. PCR amplification and simultaneous digoxigenin incorporation of long DNA probes for fluorescence in situ hybridization. Celeda D, Bettag U, Cremer C. Biotechniques; 1992 Jan 01; 12(1):98-102. PubMed ID: 1734931 [Abstract] [Full Text] [Related]
10. [A DNA probe suitable for the detection of chromosome 21 copy number in human interphase nuclei by fluorescence in situ hybridization]. Shi Q, Shan X, Zhang J, Zhang X, Chen Y, Deng X, Huang H, Yu L, Zhao S, Zheng Q, Adler I. Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 1999 Feb 10; 16(1):36-40. PubMed ID: 9949239 [Abstract] [Full Text] [Related]
11. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes. Durm M, Haar FM, Hausmann M, Ludwig H, Cremer C. Z Naturforsch C J Biosci; 1996 Feb 10; 51(3-4):253-61. PubMed ID: 8639232 [Abstract] [Full Text] [Related]
12. Numerical aberrations of chromosome 17 detected by FISH with DNA-specific probe in oral tumors. Tsuji T, Mimura Y, Maeda K, Ida M, Sasaki K, Shinozaki F. Anticancer Res; 1994 Feb 10; 14(5A):1689-93. PubMed ID: 7847802 [Abstract] [Full Text] [Related]
13. Detection of chromosome aneuploidy in interphase nuclei from human primary breast tumors using chromosome-specific repetitive DNA probes. Devilee P, Thierry RF, Kievits T, Kolluri R, Hopman AH, Willard HF, Pearson PL, Cornelisse CJ. Cancer Res; 1988 Oct 15; 48(20):5825-30. PubMed ID: 3167839 [Abstract] [Full Text] [Related]
14. Reliability and efficiency of interphase-fish with alpha-satellite probe for detection of aneuploidy. Acar H, Yildirim MS, Kaynak M. Genet Couns; 2002 Oct 15; 13(1):11-7. PubMed ID: 12017232 [Abstract] [Full Text] [Related]
15. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. du Manoir S, Speicher MR, Joos S, Schröck E, Popp S, Döhner H, Kovacs G, Robert-Nicoud M, Lichter P, Cremer T. Hum Genet; 1993 Feb 15; 90(6):590-610. PubMed ID: 8444465 [Abstract] [Full Text] [Related]
16. Fluorescence intensity profiles of in situ hybridization signals depict genome architecture within human interphase nuclei. Iourov IY, Vorsanova SG, Yurov YB. Tsitol Genet; 2008 Feb 15; 42(5):3-8. PubMed ID: 19140435 [Abstract] [Full Text] [Related]
17. Interphase fluorescence in situ hybridization analysis: a study using centromeric probes 7, 8, and 12. Zhao L, Khan Z, Hayes KJ, Glassman AB. Ann Clin Lab Sci; 1998 Feb 15; 28(1):51-6. PubMed ID: 9512785 [Abstract] [Full Text] [Related]
18. A degenerate alpha satellite probe, detecting a centromeric deletion on chromosome 21 in an apparently normal human male, shows limitations of the use of satellite DNA probes for interphase ploidy analysis. Weier HU, Gray JW. Anal Cell Pathol; 1992 Mar 15; 4(2):81-6. PubMed ID: 1550797 [Abstract] [Full Text] [Related]
19. Interphase cytogenetics of hematological cancer: comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes. Poddighe PJ, Moesker O, Smeets D, Awwad BH, Ramaekers FC, Hopman AH. Cancer Res; 1991 Apr 01; 51(7):1959-67. PubMed ID: 2004382 [Abstract] [Full Text] [Related]
20. Diagnosis of bovine freemartinism by fluorescence in situ hybridization on interphase nuclei using a bovine Y chromosome-specific DNA probe. Sohn SH, Cho EJ, Son WJ, Lee CY. Theriogenology; 2007 Oct 15; 68(7):1003-11. PubMed ID: 17870153 [Abstract] [Full Text] [Related] Page: [Next] [New Search]