These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 8002472
1. Rapid degradation of the triazinone herbicide metamitron by a Rhodococcus sp. isolated from treated soil. Parekh NR, Walker A, Roberts SJ, Welch SJ. J Appl Bacteriol; 1994 Nov; 77(5):467-75. PubMed ID: 8002472 [Abstract] [Full Text] [Related]
2. Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage. Fang H, Xu T, Cao D, Cheng L, Yu Y. Sci Rep; 2016 Aug 31; 6():32339. PubMed ID: 27578531 [Abstract] [Full Text] [Related]
3. Isolation and characterisation of Rhodococcus erythropolis TA57 able to degrade the triazine amine product from hydrolysis of sulfonylurea pesticides in soils. Andersen SM, Mortensen HS, Bossi R, Jacobsen CS. Syst Appl Microbiol; 2001 Jul 31; 24(2):262-6. PubMed ID: 11518330 [Abstract] [Full Text] [Related]
4. Identification of degradation routes of metamitron in soil microcosms using 13C-isotope labeling. Wang S, Miltner A, Nowak KM. Environ Pollut; 2017 Jan 31; 220(Pt B):927-935. PubMed ID: 27823863 [Abstract] [Full Text] [Related]
5. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Lenke H, Pieper DH, Bruhn C, Knackmuss HJ. Appl Environ Microbiol; 1992 Sep 31; 58(9):2928-32. PubMed ID: 1444407 [Abstract] [Full Text] [Related]
6. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R. J Hazard Mater; 2009 Apr 30; 163(2-3):1199-206. PubMed ID: 18762376 [Abstract] [Full Text] [Related]
7. Biodegradation of atrazine by Rhodococcus sp. BCH2 to N-isopropylammelide with subsequent assessment of toxicity of biodegraded metabolites. Kolekar PD, Phugare SS, Jadhav JP. Environ Sci Pollut Res Int; 2014 Feb 30; 21(3):2334-2345. PubMed ID: 24062064 [Abstract] [Full Text] [Related]
8. Degradation of 5-nitroguaiacol by soil bacteria of the genus Rhodococcus. Navrátilová J, Tvrzová L, Neca J, Nemec M. Folia Microbiol (Praha); 2004 Feb 30; 49(5):613-5. PubMed ID: 15702555 [Abstract] [Full Text] [Related]
9. Biodegradation of methylthio-s-triazines by Rhodococcus sp. strain FJ1117YT, and production of the corresponding methylsulfinyl, methylsulfonyl and hydroxy analogues. Fujii K, Takagi K, Hiradate S, Iwasaki A, Harada N. Pest Manag Sci; 2007 Mar 30; 63(3):254-60. PubMed ID: 17245693 [Abstract] [Full Text] [Related]
10. Isolation, identification, and acetochlor-degrading potential of a novel Rhodococcus sp. MZ-3. Zhang D, Li Z, Qiu J, Ma Y, Zhou S. J Environ Sci Health B; 2016 Oct 02; 51(10):688-694. PubMed ID: 27322942 [Abstract] [Full Text] [Related]
11. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bajaj A, Mayilraj S, Mudiam MK, Patel DK, Manickam N. Bioresour Technol; 2014 Sep 02; 167():398-406. PubMed ID: 25000395 [Abstract] [Full Text] [Related]
12. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil. Li C, Zhang J, Wu ZG, Cao L, Yan X, Li SP. J Agric Food Chem; 2012 Mar 14; 60(10):2531-7. PubMed ID: 22335821 [Abstract] [Full Text] [Related]
13. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6. Jing-Liang X, Xiang-Yang G, Biao S, Zhi-Chun W, Kun W, Shun-Peng L. Curr Microbiol; 2006 Jul 14; 53(1):72-6. PubMed ID: 16775791 [Abstract] [Full Text] [Related]
14. Plasmid localization and organization of melamine degradation genes in Rhodococcus sp. strain Mel. Dodge AG, Wackett LP, Sadowsky MJ. Appl Environ Microbiol; 2012 Mar 14; 78(5):1397-403. PubMed ID: 22210223 [Abstract] [Full Text] [Related]
15. Isolation and identification of hexazinone-degrading bacterium from sugarcane-cultivated soil in Kenya. Ngigi A, Getenga Z, Boga H, Ndalut P. Bull Environ Contam Toxicol; 2014 Mar 14; 92(3):364-8. PubMed ID: 24458247 [Abstract] [Full Text] [Related]
16. Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Mamy L, Barriuso E, Gabrielle B. Pest Manag Sci; 2005 Sep 14; 61(9):905-16. PubMed ID: 16041722 [Abstract] [Full Text] [Related]
17. Field dissipation of metamitron in soil and sugar beet crop. Janaki P, Rathika S, Chinnusamy C, Prabhakaran NK. Bull Environ Contam Toxicol; 2013 Jan 14; 90(1):116-9. PubMed ID: 23135307 [Abstract] [Full Text] [Related]
18. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. Van Hong Thi Pham, Chaudhary DK, Jeong SW, Kim J. World J Microbiol Biotechnol; 2018 Feb 06; 34(2):33. PubMed ID: 29411146 [Abstract] [Full Text] [Related]
19. Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Charnay MP, Tuis S, Coquet Y, Barriuso E. Pest Manag Sci; 2005 Sep 06; 61(9):845-55. PubMed ID: 16003827 [Abstract] [Full Text] [Related]
20. Transformation of metamitron in water-sediment systems: Detailed insight into the biodegradation processes. Wang S, Miltner A, Kästner M, Schäffer A, Nowak KM. Sci Total Environ; 2017 Feb 01; 578():100-108. PubMed ID: 27839759 [Abstract] [Full Text] [Related] Page: [Next] [New Search]