These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 801195

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Sodium transport in the toad bladder. The functional organization of the granular cell: a review.
    Frazier HS.
    Circ Res; 1971 May; 28(5):Suppl 2:14-20. PubMed ID: 4936136
    [No Abstract] [Full Text] [Related]

  • 3. Activation energy for water diffusion across the toad bladder: evidence against the pore enlargement hypothesis.
    Hays RM, Franki N, Soberman R.
    J Clin Invest; 1971 May; 50(5):1016-8. PubMed ID: 5552404
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Cellular constraints to diffusion. The effect of antidiuretic hormone on water flows in isolated mammalian collecting tubules.
    Schafer JA, Andreoli TE.
    J Clin Invest; 1972 May; 51(5):1264-78. PubMed ID: 5057131
    [Abstract] [Full Text] [Related]

  • 6. [Second messengers in the triggering and adaptational-trophic effects of the antidiuretic hormone].
    Natochin IuV.
    Fiziol Zh SSSR Im I M Sechenova; 1992 Nov; 78(11):1-10. PubMed ID: 1302705
    [Abstract] [Full Text] [Related]

  • 7. Aspirin potentiates the hydrosmotic effect of antidiuretic hormone in toad urinary bladder.
    Parisi M, Piccinni ZF.
    Biochim Biophys Acta; 1972 Aug 18; 279(1):209-12. PubMed ID: 4631526
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Mode of water transport in mammalian renal collecting tubules.
    Grantham JJ.
    Fed Proc; 1971 Aug 18; 30(1):14-21. PubMed ID: 5539868
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Response of the collecting duct to the demands of homeostasis.
    Schafer JA.
    Physiologist; 1979 Oct 18; 22(5):44-53. PubMed ID: 392570
    [No Abstract] [Full Text] [Related]

  • 14. Membrane characteristics governing salt and water transport in the loop of Henle.
    Kokko JP.
    Fed Proc; 1974 Jan 18; 33(1):25-30. PubMed ID: 4810197
    [No Abstract] [Full Text] [Related]

  • 15. The effect of cyclic AMP on membrane permeability.
    Handler JS.
    J Supramol Struct; 1973 Jan 18; 1(4):380-1. PubMed ID: 4358443
    [No Abstract] [Full Text] [Related]

  • 16. Role of membrane traffic in the water and Na+ responses to vasopressin.
    Wade JB.
    Semin Nephrol; 1994 Jul 18; 14(4):322-32. PubMed ID: 7938947
    [No Abstract] [Full Text] [Related]

  • 17. [Critical observations on the countercurrent urinary concentration system. II. Anatomophysiological considerations].
    Marchese G.
    Recenti Prog Med; 1967 Mar 18; 46(3):286-304. PubMed ID: 5633145
    [No Abstract] [Full Text] [Related]

  • 18. Recent discoveries in vasopressin-regulated aquaporin-2 trafficking.
    Fenton RA, Moeller HB.
    Prog Brain Res; 2008 Mar 18; 170():571-9. PubMed ID: 18655910
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.