These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 8017905

  • 1. Pentose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B, Dawson KA, Strobel HJ.
    Appl Environ Microbiol; 1994 Apr; 60(4):1087-92. PubMed ID: 8017905
    [Abstract] [Full Text] [Related]

  • 2. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ.
    FEMS Microbiol Lett; 1994 Oct 01; 122(3):217-22. PubMed ID: 7988863
    [Abstract] [Full Text] [Related]

  • 3. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ.
    Appl Environ Microbiol; 1993 Jan 01; 59(1):40-6. PubMed ID: 8439166
    [Abstract] [Full Text] [Related]

  • 4. Cellobiose versus glucose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B, Dawson KA, Strobel HJ.
    Appl Environ Microbiol; 1993 Aug 01; 59(8):2631-7. PubMed ID: 8368849
    [Abstract] [Full Text] [Related]

  • 5. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ.
    Arch Microbiol; 1993 Aug 01; 159(5):465-71. PubMed ID: 8484709
    [Abstract] [Full Text] [Related]

  • 6. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.
    Lou J, Dawson KA, Strobel HJ.
    Curr Microbiol; 1997 Oct 01; 35(4):221-7. PubMed ID: 9290062
    [Abstract] [Full Text] [Related]

  • 7. Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens.
    Strobel HJ, Dawson KA.
    FEMS Microbiol Lett; 1993 Nov 01; 113(3):291-6. PubMed ID: 8270194
    [Abstract] [Full Text] [Related]

  • 8. The Thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria.
    Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J.
    PLoS Genet; 2011 Oct 01; 7(10):e1002318. PubMed ID: 22022280
    [Abstract] [Full Text] [Related]

  • 9. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S, Trinh CT.
    Appl Environ Microbiol; 2018 Feb 01; 84(3):. PubMed ID: 29150499
    [Abstract] [Full Text] [Related]

  • 10. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L, Lewis IA, Park JO, Rabinowitz JD.
    Appl Environ Microbiol; 2015 Feb 01; 81(4):1452-62. PubMed ID: 25527534
    [Abstract] [Full Text] [Related]

  • 11. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y, Odt CL, Weimer PJ.
    Appl Environ Microbiol; 1997 Feb 01; 63(2):734-42. PubMed ID: 9023950
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M, Shen L, Albersmeier A, van der Kolk N, Kim S, Cha J, Bräsen C, Kalinowski J, Siebers B, Albers SV.
    Appl Environ Microbiol; 2018 Feb 01; 84(3):. PubMed ID: 29150511
    [Abstract] [Full Text] [Related]

  • 15. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y, Weimer PJ.
    Appl Environ Microbiol; 1996 Mar 01; 62(3):1084-8. PubMed ID: 8975600
    [Abstract] [Full Text] [Related]

  • 16. Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose.
    Dvořák P, de Lorenzo V.
    Metab Eng; 2018 Jul 01; 48():94-108. PubMed ID: 29864584
    [Abstract] [Full Text] [Related]

  • 17. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis.
    Christopherson MR, Dawson JA, Stevenson DM, Cunningham AC, Bramhacharya S, Weimer PJ, Kendziorski C, Suen G.
    BMC Genomics; 2014 Dec 04; 15(1):1066. PubMed ID: 25477200
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Bypassing the Pentose Phosphate Pathway: Towards Modular Utilization of Xylose.
    Chomvong K, Bauer S, Benjamin DI, Li X, Nomura DK, Cate JH.
    PLoS One; 2016 Dec 04; 11(6):e0158111. PubMed ID: 27336308
    [Abstract] [Full Text] [Related]

  • 20. PENTOSE UTILIZATION BY PEDIOCOCCUS PENTOSACEUS.
    DOBROGOSZ WJ, DEMOSS RD.
    J Bacteriol; 1963 Jun 04; 85(6):1356-64. PubMed ID: 14047230
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.