These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


503 related items for PubMed ID: 8021167

  • 1. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides.
    Lang HP, Cogdell RJ, Gardiner AT, Hunter CN.
    J Bacteriol; 1994 Jul; 176(13):3859-69. PubMed ID: 8021167
    [Abstract] [Full Text] [Related]

  • 2. The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides.
    Lang HP, Hunter CN.
    Biochem J; 1994 Feb 15; 298 ( Pt 1)(Pt 1):197-205. PubMed ID: 8129720
    [Abstract] [Full Text] [Related]

  • 3. Carotenogenesis gene cluster and phytoene desaturase catalyzing both three- and four-step desaturations from Rhodobacter azotoformans.
    Zhang J, Lu L, Yin L, Xie S, Xiao M.
    FEMS Microbiol Lett; 2012 Aug 15; 333(2):138-45. PubMed ID: 22640029
    [Abstract] [Full Text] [Related]

  • 4. Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola.
    Garcia-Asua G, Cogdell RJ, Hunter CN.
    Mol Microbiol; 2002 Apr 15; 44(1):233-44. PubMed ID: 11967082
    [Abstract] [Full Text] [Related]

  • 5. Phytoene desaturase, CrtI, of the purple photosynthetic bacterium, Rubrivivax gelatinosus, produces both neurosporene and lycopene.
    Harada J, Nagashima KV, Takaichi S, Misawa N, Matsuura K, Shimada K.
    Plant Cell Physiol; 2001 Oct 15; 42(10):1112-8. PubMed ID: 11673627
    [Abstract] [Full Text] [Related]

  • 6. Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus.
    Armstrong GA, Schmidt A, Sandmann G, Hearst JE.
    J Biol Chem; 1990 May 15; 265(14):8329-38. PubMed ID: 2159477
    [Abstract] [Full Text] [Related]

  • 7. Sequencing, chromosomal inactivation, and functional expression in Escherichia coli of ppsR, a gene which represses carotenoid and bacteriochlorophyll synthesis in Rhodobacter sphaeroides.
    Penfold RJ, Pemberton JM.
    J Bacteriol; 1994 May 15; 176(10):2869-76. PubMed ID: 8188588
    [Abstract] [Full Text] [Related]

  • 8. Carotenoids are essential for normal levels of dimerisation of the RC-LH1-PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant.
    Ng IW, Adams PG, Mothersole DJ, Vasilev C, Martin EC, Lang HP, Tucker JD, Neil Hunter C.
    Biochim Biophys Acta; 2011 Sep 15; 1807(9):1056-63. PubMed ID: 21651888
    [Abstract] [Full Text] [Related]

  • 9. Nucleotide sequence of the methoxyneurosporene dehydrogenase gene from Rhodobacter sphaeroides: comparison with other bacterial carotenoid dehydrogenases.
    Garí E, Toledo JC, Gibert I, Barbé J.
    FEMS Microbiol Lett; 1992 May 15; 72(1):103-8. PubMed ID: 1612412
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Pleiotropic effects of puf interposon mutagenesis on carotenoid biosynthesis in Rubrivivax gelatinosus. A new gene organization in purple bacteria.
    Ouchane S, Picaud M, Vernotte C, Reiss-Husson F, Astier C.
    J Biol Chem; 1997 Jan 17; 272(3):1670-6. PubMed ID: 8999844
    [Abstract] [Full Text] [Related]

  • 13. Characterization of two carotenoid gene promoters in the cyanobacterium Synechocystis sp. PCC 6803.
    Fernández-González B, Martínez-Férez IM, Vioque A.
    Biochim Biophys Acta; 1998 Dec 22; 1443(3):343-51. PubMed ID: 9878819
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway.
    Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Neil Hunter C.
    Biochim Biophys Acta; 2015 Feb 22; 1847(2):189-201. PubMed ID: 25449968
    [Abstract] [Full Text] [Related]

  • 16. Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli.
    Song GH, Kim SH, Choi BH, Han SJ, Lee PC.
    Appl Environ Microbiol; 2013 Jan 22; 79(2):610-8. PubMed ID: 23144136
    [Abstract] [Full Text] [Related]

  • 17. Molecular Cloning and Co-Expression of Phytoene Synthase Gene from Kocuria gwangalliensis in Escherichia coli.
    Seo YB, Choi SS, Lee JK, Kim NH, Choi MJ, Kim JM, Jeong TH, Nam SW, Lim HK, Kim GD.
    J Microbiol Biotechnol; 2015 Nov 22; 25(11):1801-9. PubMed ID: 26215267
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum.
    Frigaard NU, Maresca JA, Yunker CE, Jones AD, Bryant DA.
    J Bacteriol; 2004 Aug 22; 186(16):5210-20. PubMed ID: 15292122
    [Abstract] [Full Text] [Related]

  • 20. Co-production of farnesol and coenzyme Q10 from metabolically engineered Rhodobacter sphaeroides.
    Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F.
    Microb Cell Fact; 2019 May 31; 18(1):98. PubMed ID: 31151455
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.