These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
192 related items for PubMed ID: 8021223
1. Inability of muconate cycloisomerases to cause dehalogenation during conversion of 2-chloro-cis,cis-muconate. Vollmer MD, Fischer P, Knackmuss HJ, Schlömann M. J Bacteriol; 1994 Jul; 176(14):4366-75. PubMed ID: 8021223 [Abstract] [Full Text] [Related]
2. Conversion of 2-chloro-cis,cis-muconate and its metabolites 2-chloro- and 5-chloromuconolactone by chloromuconate cycloisomerases of pJP4 and pAC27. Vollmer MD, Schlömann M. J Bacteriol; 1995 May; 177(10):2938-41. PubMed ID: 7751312 [Abstract] [Full Text] [Related]
3. Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Vollmer MD, Hoier H, Hecht HJ, Schell U, Gröning J, Goldman A, Schlömann M. Appl Environ Microbiol; 1998 Sep; 64(9):3290-9. PubMed ID: 9726873 [Abstract] [Full Text] [Related]
4. Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases. Solyanikova IP, Maltseva OV, Vollmer MD, Golovleva LA, Schlömann M. J Bacteriol; 1995 May; 177(10):2821-6. PubMed ID: 7751292 [Abstract] [Full Text] [Related]
5. Formation of protoanemonin from 2-chloro-cis,cis-muconate by the combined action of muconate cycloisomerase and muconolactone isomerase. Skiba A, Hecht V, Pieper DH. J Bacteriol; 2002 Oct; 184(19):5402-9. PubMed ID: 12218027 [Abstract] [Full Text] [Related]
6. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP. Kolomytseva M, Ferraroni M, Chernykh A, Golovleva L, Scozzafava A. Biochim Biophys Acta; 2014 Sep; 1844(9):1541-9. PubMed ID: 24768773 [Abstract] [Full Text] [Related]
7. Mechanism of chloride elimination from 3-chloro- and 2,4-dichloro-cis,cis-muconate: new insight obtained from analysis of muconate cycloisomerase variant CatB-K169A. Kaulmann U, Kaschabek SR, Schlömann M. J Bacteriol; 2001 Aug; 183(15):4551-61. PubMed ID: 11443090 [Abstract] [Full Text] [Related]
8. Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. Schlömann M, Fischer P, Schmidt E, Knackmuss HJ. J Bacteriol; 1990 Sep; 172(9):5119-29. PubMed ID: 2394680 [Abstract] [Full Text] [Related]
9. Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51. Vollmer MD, Schell U, Seibert V, Lakner S, Schlömann M. Appl Microbiol Biotechnol; 1999 May; 51(5):598-605. PubMed ID: 10390818 [Abstract] [Full Text] [Related]
10. Cis,cis-muconate lactonizing enzyme from Trichosporon cutaneum: evidence for a novel class of cycloisomerases in eucaryotes. Mazur P, Pieken WA, Budihas SR, Williams SE, Wong S, Kozarich JW. Biochemistry; 1994 Feb 22; 33(7):1961-70. PubMed ID: 8110801 [Abstract] [Full Text] [Related]
11. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Laemmli CM, Schönenberger R, Suter M, Zehnder AJ, van der Meer JR. Arch Microbiol; 2002 Jul 22; 178(1):13-25. PubMed ID: 12070765 [Abstract] [Full Text] [Related]
12. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: primary and secondary kinetic and equilibrium deuterium isotope effects upon the interconversion of (+)-muconolactone to cis,cis-muconate catalyzed by cis,cis-muconate cycloisomerase. Ngai KL, Kallen RG. Biochemistry; 1983 Oct 25; 22(22):5231-6. PubMed ID: 6652063 [Abstract] [Full Text] [Related]
13. A new type of muconate cycloisomerase from Rhodococcus rhodochrous strain 89. Solyanikova IP, Schlömann M, Golovleva LA. Biochemistry (Mosc); 2001 Jul 25; 66(7):747-52. PubMed ID: 11563954 [Abstract] [Full Text] [Related]
15. Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Schmidt E, Knackmuss HJ. Biochem J; 1980 Oct 15; 192(1):339-47. PubMed ID: 7305906 [Abstract] [Full Text] [Related]
16. Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. Plumeier I, Pérez-Pantoja D, Heim S, González B, Pieper DH. J Bacteriol; 2002 Aug 15; 184(15):4054-64. PubMed ID: 12107121 [Abstract] [Full Text] [Related]
17. From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. Blasco R, Wittich RM, Mallavarapu M, Timmis KN, Pieper DH. J Biol Chem; 1995 Dec 08; 270(49):29229-35. PubMed ID: 7493952 [Abstract] [Full Text] [Related]
18. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: kinetic and magnetic resonance studies of the cis,cis-muconate cycloisomerase catalyzed reaction. Ngai KL, Ornston LN, Kallen RG. Biochemistry; 1983 Oct 25; 22(22):5223-30. PubMed ID: 6652062 [Abstract] [Full Text] [Related]
19. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. Nikodem P, Hecht V, Schlömann M, Pieper DH. J Bacteriol; 2003 Dec 25; 185(23):6790-800. PubMed ID: 14617643 [Abstract] [Full Text] [Related]
20. Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-substituted muconolactones. Prucha M, Peterseim A, Timmis KN, Pieper DH. Eur J Biochem; 1996 Apr 15; 237(2):350-6. PubMed ID: 8647072 [Abstract] [Full Text] [Related] Page: [Next] [New Search]