These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
146 related items for PubMed ID: 8024040
1. Angiotensin I is converted to angiotensin II by a serine protease in human detrusor smooth muscle. Lindberg BF, Nilsson LG, Hedlund H, Stahl M, Andersson KE. Am J Physiol; 1994 Jun; 266(6 Pt 2):R1861-7. PubMed ID: 8024040 [Abstract] [Full Text] [Related]
2. Characterization of angiotensin II formation in human isolated bladder by selective inhibitors of ACE and human chymase: a functional and biochemical study. Waldeck K, Lindberg BF, Persson K, Andersson KE. Br J Pharmacol; 1997 Jul; 121(6):1081-6. PubMed ID: 9249242 [Abstract] [Full Text] [Related]
3. Functional evidence for a role of vascular chymase in the production of angiotensin II in isolated human arteries. Richard V, Hurel-Merle S, Scalbert E, Ferry G, Lallemand F, Bessou JP, Thuillez C. Circulation; 2001 Aug 14; 104(7):750-2. PubMed ID: 11502696 [Abstract] [Full Text] [Related]
5. Effect of chronic angiotensin converting enzyme inhibition on angiotensin I and bradykinin metabolism in rats. Stanziola L, Greene LJ, Santos RA. Am J Hypertens; 1999 Oct 14; 12(10 Pt 1):1021-9. PubMed ID: 10560789 [Abstract] [Full Text] [Related]
6. Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts. Schunkert H, Jackson B, Tang SS, Schoen FJ, Smits JF, Apstein CS, Lorell BH. Circulation; 1993 Apr 14; 87(4):1328-39. PubMed ID: 8384939 [Abstract] [Full Text] [Related]
7. Conversion of angiotensin I to angiotensin II by chymase activity in human pulmonary membranes. Lindberg BF, Gyllstedt E, Andersson KE. Peptides; 1997 Apr 14; 18(6):847-53. PubMed ID: 9285934 [Abstract] [Full Text] [Related]
8. The bladder angiotensin system in female rats: response to infusions of angiotensin I and the angiotensin converting enzyme inhibitor enalaprilat. Weaver-Osterholtz D, Reams G, De Vergel CF, Bauer JH. J Urol; 2001 May 14; 165(5):1735-8. PubMed ID: 11342966 [Abstract] [Full Text] [Related]
9. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway. Zisman LS, Abraham WT, Meixell GE, Vamvakias BN, Quaife RA, Lowes BD, Roden RL, Peacock SJ, Groves BM, Raynolds MV. J Clin Invest; 1995 Sep 14; 96(3):1490-8. PubMed ID: 7657820 [Abstract] [Full Text] [Related]
10. The urinary bladder angiotensin system: response to infusions of angiotensin I and angiotensin-converting enzyme inhibitors. Weaver-Osterholtz D, Reams G, Wu Z, Knaus J, Campbell F, Bauer JH. Am J Kidney Dis; 1996 Oct 14; 28(4):603-9. PubMed ID: 8840953 [Abstract] [Full Text] [Related]
11. Angiotensin-converting enzyme-independent contraction to angiotensin I in human resistance arteries. Padmanabhan N, Jardine AG, McGrath JC, Connell JM. Circulation; 1999 Jun 08; 99(22):2914-20. PubMed ID: 10359736 [Abstract] [Full Text] [Related]
12. ACE-versus chymase-dependent angiotensin II generation in human coronary arteries: a matter of efficiency? Tom B, Garrelds IM, Scalbert E, Stegmann AP, Boomsma F, Saxena PR, Danser AH. Arterioscler Thromb Vasc Biol; 2003 Feb 01; 23(2):251-6. PubMed ID: 12588767 [Abstract] [Full Text] [Related]
13. Conversion of angiotensin I to angiotensin II in dog isolated renal artery: role of two different angiotensin II-generating enzymes. Okamura T, Okunishi H, Ayajiki K, Toda N. J Cardiovasc Pharmacol; 1990 Mar 01; 15(3):353-9. PubMed ID: 1691356 [Abstract] [Full Text] [Related]
15. Differences between angiotensin-converting enzyme inhibition and angiotensin II-AT1 antagonism on angiotensin-mediated responses in human internal mammary arteries. Voors AA, Oosterga M, Buikema H, Mariani M, Grandjean JG, van Gilst WH. J Cardiovasc Pharmacol; 2003 Feb 01; 41(2):178-84. PubMed ID: 12548077 [Abstract] [Full Text] [Related]
16. Renal interstitial fluid angiotensin I and angiotensin II concentrations during local angiotensin-converting enzyme inhibition. Nishiyama A, Seth DM, Navar LG. J Am Soc Nephrol; 2002 Sep 01; 13(9):2207-12. PubMed ID: 12191964 [Abstract] [Full Text] [Related]
17. Vasoconstrictor effect of the angiotensin-converting enzyme-resistant, chymase-specific substrate [Pro(11)(D)-Ala(12)] angiotensin I in human dorsal hand veins: in vivo demonstration of non-ace production of angiotensin II in humans. McDonald JE, Padmanabhan N, Petrie MC, Hillier C, Connell JM, McMurray JJ. Circulation; 2001 Oct 09; 104(15):1805-8. PubMed ID: 11591618 [Abstract] [Full Text] [Related]
18. Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Nishimura H, Buikema H, Baltatu O, Ganten D, Urata H. Am J Physiol; 1998 Oct 09; 275(4):H1307-12. PubMed ID: 9746480 [Abstract] [Full Text] [Related]
19. The functional ratio of chymase and angiotensin converting enzyme in angiotensin I-induced vascular contraction in monkeys, dogs and rats. Jin D, Takai S, Yamada M, Sakaguchi M, Miyazaki M. Jpn J Pharmacol; 2000 Dec 09; 84(4):449-54. PubMed ID: 11202618 [Abstract] [Full Text] [Related]
20. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Fox J, Guan S, Hymel AA, Navar LG. Am J Physiol; 1992 May 09; 262(5 Pt 2):F902-9. PubMed ID: 1317125 [Abstract] [Full Text] [Related] Page: [Next] [New Search]