These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
239 related items for PubMed ID: 8027003
1. Polymerase chain reaction for detection of Clostridium botulinum types A, B and E in food, soil and infant faeces. Szabo EA, Pemberton JM, Gibson AM, Eyles MJ, Desmarchelier PM. J Appl Bacteriol; 1994 Jun; 76(6):539-45. PubMed ID: 8027003 [Abstract] [Full Text] [Related]
2. The detection and prevalence of Clostridium botulinum in pig intestinal samples. Myllykoski J, Nevas M, Lindström M, Korkeala H. Int J Food Microbiol; 2006 Jul 15; 110(2):172-7. PubMed ID: 16806550 [Abstract] [Full Text] [Related]
3. Development of a combined selection and enrichment PCR procedure for Clostridium botulinum Types B, E, and F and its use to determine prevalence in fecal samples from slaughtered pigs. Dahlenborg M, Borch E, Rådström P. Appl Environ Microbiol; 2001 Oct 15; 67(10):4781-8. PubMed ID: 11571185 [Abstract] [Full Text] [Related]
4. Survey of infant foods for Clostridium botulinum spores. Guilfoyle DE, Yager JF. J Assoc Off Anal Chem; 1983 Sep 15; 66(5):1302-4. PubMed ID: 6355058 [Abstract] [Full Text] [Related]
5. Application of PCR to a clinical and environmental investigation of a case of equine botulism. Szabo EA, Pemberton JM, Gibson AM, Thomas RJ, Pascoe RR, Desmarchelier PM. J Clin Microbiol; 1994 Aug 15; 32(8):1986-91. PubMed ID: 7989554 [Abstract] [Full Text] [Related]
6. Detection of C. botulinum types in honey by mPCR. Gücükoğlu A, Terzi G, Çadirci Ö, Alişarli M, Kevenk O, Uyanik T. J Food Sci; 2014 Apr 15; 79(4):M600-3. PubMed ID: 24621137 [Abstract] [Full Text] [Related]
7. An innovative molecular detection tool for tracking and tracing Clostridium botulinum types A, B, E, F and other botulinum neurotoxin producing Clostridia based on the GeneDisc cycler. Fach P, Fenicia L, Knutsson R, Wielinga PR, Anniballi F, Delibato E, Auricchio B, Woudstra C, Agren J, Segerman B, de Medici D, van Rotterdam BJ. Int J Food Microbiol; 2011 Mar 01; 145 Suppl 1():S145-51. PubMed ID: 20471128 [Abstract] [Full Text] [Related]
8. Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Lindström M, Keto R, Markkula A, Nevas M, Hielm S, Korkeala H. Appl Environ Microbiol; 2001 Dec 01; 67(12):5694-9. PubMed ID: 11722924 [Abstract] [Full Text] [Related]
9. Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism. Bianco MI, Lúquez C, De Jong LI, Fernández RA. Rev Argent Microbiol; 2009 Dec 01; 41(4):232-6. PubMed ID: 20085187 [Abstract] [Full Text] [Related]
10. Infant botulism. Identification of Clostridium botulinum and its toxins in faeces. Midura TF, Arnon SS. Lancet; 1976 Oct 30; 2(7992):934-6. PubMed ID: 62164 [Abstract] [Full Text] [Related]
11. A case of infant botulism with a possible link to infant formula milk powder: evidence for the presence of more than one strain of Clostridium botulinum in clinical specimens and food. Brett MM, McLauchlin J, Harris A, O'Brien S, Black N, Forsyth RJ, Roberts D, Bolton FJ. J Med Microbiol; 2005 Aug 30; 54(Pt 8):769-776. PubMed ID: 16014431 [Abstract] [Full Text] [Related]
12. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Kirchner S, Krämer KM, Schulze M, Pauly D, Jacob D, Gessler F, Nitsche A, Dorner BG, Dorner MB. Appl Environ Microbiol; 2010 Jul 30; 76(13):4387-95. PubMed ID: 20435756 [Abstract] [Full Text] [Related]
13. Polymerase chain reaction for the rapid identification of Clostridium botulinum type A strains and detection in food samples. Fach P, Hauser D, Guillou JP, Popoff MR. J Appl Bacteriol; 1993 Sep 30; 75(3):234-9. PubMed ID: 8244901 [Abstract] [Full Text] [Related]
14. High prevalence of Clostridium botulinum types A and B in honey samples detected by polymerase chain reaction. Nevas M, Hielm S, Lindström M, Horn H, Koivulehto K, Korkeala H. Int J Food Microbiol; 2002 Jan 30; 72(1-2):45-52. PubMed ID: 11843412 [Abstract] [Full Text] [Related]
15. Prevalence of Clostridium botulinum types B, E and F in faecal samples from Swedish cattle. Dahlenborg M, Borch E, Rådström P. Int J Food Microbiol; 2003 Apr 25; 82(2):105-10. PubMed ID: 12568750 [Abstract] [Full Text] [Related]
16. Quantities of Clostridium botulinum organisms and toxin in feces and presence of Clostridium botulinum toxin in the serum of an infant with botulism. Paton JC, Lawrence AJ, Steven IM. J Clin Microbiol; 1983 Jan 25; 17(1):13-5. PubMed ID: 6338033 [Abstract] [Full Text] [Related]
17. PCR for detection of Clostridium botulinum type C in avian and environmental samples. Franciosa G, Fenicia L, Caldiani C, Aureli P. J Clin Microbiol; 1996 Apr 25; 34(4):882-5. PubMed ID: 8815101 [Abstract] [Full Text] [Related]
18. Presence of Clostridium botulinum spores in Matricaria chamomilla (chamomile) and its relationship with infant botulism. Bianco MI, Lúquez C, de Jong LI, Fernández RA. Int J Food Microbiol; 2008 Feb 10; 121(3):357-60. PubMed ID: 18068252 [Abstract] [Full Text] [Related]
19. Development and application of Real-Time PCR assays to detect fragments of the Clostridium botulinum types A, B, and E neurotoxin genes for investigation of human foodborne and infant botulism. Akbulut D, Grant KA, McLauchlin J. Foodborne Pathog Dis; 2004 Feb 10; 1(4):247-57. PubMed ID: 15992287 [Abstract] [Full Text] [Related]
20. Food and environmental aspects of infant botulism in California. Chin J, Arnon SS, Midura TF. Rev Infect Dis; 1979 Feb 10; 1(4):693-7. PubMed ID: 399377 [Abstract] [Full Text] [Related] Page: [Next] [New Search]