These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 8034624

  • 1. Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85.
    Zheng Y, Bagrodia S, Cerione RA.
    J Biol Chem; 1994 Jul 22; 269(29):18727-30. PubMed ID: 8034624
    [Abstract] [Full Text] [Related]

  • 2. Biochemical comparisons of the Saccharomyces cerevisiae Bem2 and Bem3 proteins. Delineation of a limit Cdc42 GTPase-activating protein domain.
    Zheng Y, Hart MJ, Shinjo K, Evans T, Bender A, Cerione RA.
    J Biol Chem; 1993 Nov 25; 268(33):24629-34. PubMed ID: 8227021
    [Abstract] [Full Text] [Related]

  • 3. Identification of a putative effector for Cdc42Hs with high sequence similarity to the RasGAP-related protein IQGAP1 and a Cdc42Hs binding partner with similarity to IQGAP2.
    McCallum SJ, Wu WJ, Cerione RA.
    J Biol Chem; 1996 Sep 06; 271(36):21732-7. PubMed ID: 8702968
    [Abstract] [Full Text] [Related]

  • 4. Sequestration of a G-protein beta gamma subunit or ADP-ribosylation of Rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases.
    Zhang J, Zhang J, Benovic JL, Sugai M, Wetzker R, Gout I, Rittenhouse SE.
    J Biol Chem; 1995 Mar 24; 270(12):6589-94. PubMed ID: 7896797
    [Abstract] [Full Text] [Related]

  • 5. The faciogenital dysplasia gene product FGD1 functions as a Cdc42Hs-specific guanine-nucleotide exchange factor.
    Zheng Y, Fischer DJ, Santos MF, Tigyi G, Pasteris NG, Gorski JL, Xu Y.
    J Biol Chem; 1996 Dec 27; 271(52):33169-72. PubMed ID: 8969170
    [Abstract] [Full Text] [Related]

  • 6. Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1.
    Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K.
    J Biol Chem; 1996 Sep 20; 271(38):23363-7. PubMed ID: 8798539
    [Abstract] [Full Text] [Related]

  • 7. Use of a fluorescence spectroscopic readout to characterize the interactions of Cdc42Hs with its target/effector, mPAK-3.
    Leonard DA, Satoskar RS, Wu WJ, Bagrodia S, Cerione RA, Manor D.
    Biochemistry; 1997 Feb 04; 36(5):1173-80. PubMed ID: 9033409
    [Abstract] [Full Text] [Related]

  • 8. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein.
    Leonard D, Hart MJ, Platko JV, Eva A, Henzel W, Evans T, Cerione RA.
    J Biol Chem; 1992 Nov 15; 267(32):22860-8. PubMed ID: 1429634
    [Abstract] [Full Text] [Related]

  • 9. Activation of type I phosphatidylinositol 4-phosphate 5-kinase isoforms by the Rho GTPases, RhoA, Rac1, and Cdc42.
    Weernink PA, Meletiadis K, Hommeltenberg S, Hinz M, Ishihara H, Schmidt M, Jakobs KH.
    J Biol Chem; 2004 Feb 27; 279(9):7840-9. PubMed ID: 14681219
    [Abstract] [Full Text] [Related]

  • 10. A novel Cdc42Hs mutant induces cellular transformation.
    Lin R, Bagrodia S, Cerione R, Manor D.
    Curr Biol; 1997 Oct 01; 7(10):794-7. PubMed ID: 9368762
    [Abstract] [Full Text] [Related]

  • 11. Identification of the human platelet GTPase activating protein for the CDC42Hs protein.
    Hart MJ, Shinjo K, Hall A, Evans T, Cerione RA.
    J Biol Chem; 1991 Nov 05; 266(31):20840-8. PubMed ID: 1939135
    [Abstract] [Full Text] [Related]

  • 12. Rho family GTPases bind to phosphoinositide kinases.
    Tolias KF, Cantley LC, Carpenter CL.
    J Biol Chem; 1995 Jul 28; 270(30):17656-9. PubMed ID: 7629060
    [Abstract] [Full Text] [Related]

  • 13. The Ras-related GTPase Rac1 binds tubulin.
    Best A, Ahmed S, Kozma R, Lim L.
    J Biol Chem; 1996 Feb 16; 271(7):3756-62. PubMed ID: 8631991
    [Abstract] [Full Text] [Related]

  • 14. Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1.
    Illenberger D, Schwald F, Pimmer D, Binder W, Maier G, Dietrich A, Gierschik P.
    EMBO J; 1998 Nov 02; 17(21):6241-9. PubMed ID: 9799233
    [Abstract] [Full Text] [Related]

  • 15. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20.
    Martin GA, Bollag G, McCormick F, Abo A.
    EMBO J; 1995 May 01; 14(9):1970-8. PubMed ID: 7744004
    [Abstract] [Full Text] [Related]

  • 16. Identification of a mouse p21Cdc42/Rac activated kinase.
    Bagrodia S, Taylor SJ, Creasy CL, Chernoff J, Cerione RA.
    J Biol Chem; 1995 Sep 29; 270(39):22731-7. PubMed ID: 7559398
    [Abstract] [Full Text] [Related]

  • 17. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.
    Hart MJ, Callow MG, Souza B, Polakis P.
    EMBO J; 1996 Jun 17; 15(12):2997-3005. PubMed ID: 8670801
    [Abstract] [Full Text] [Related]

  • 18. Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs.
    Zheng Y, Glaven JA, Wu WJ, Cerione RA.
    J Biol Chem; 1996 Sep 27; 271(39):23815-9. PubMed ID: 8798610
    [Abstract] [Full Text] [Related]

  • 19. A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs.
    Hart MJ, Maru Y, Leonard D, Witte ON, Evans T, Cerione RA.
    Science; 1992 Oct 30; 258(5083):812-5. PubMed ID: 1439791
    [Abstract] [Full Text] [Related]

  • 20. Localization of the insulin-like growth factor I receptor binding sites for the SH2 domain proteins p85, Syp, and GTPase activating protein.
    Seely BL, Reichart DR, Staubs PA, Jhun BH, Hsu D, Maegawa H, Milarski KL, Saltiel AR, Olefsky JM.
    J Biol Chem; 1995 Aug 11; 270(32):19151-7. PubMed ID: 7642582
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.