These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ultrastructural, immunochemical, and cytochemical study of myeloperoxidase in myeloid leukemia HL-60 cells following treatment with succinylacetone, an inhibitor of heme biosynthesis. Castañeda VL, Parmley RT, Pinnix IB, Raju SG, Guzman GS, Kinkade JM. Exp Hematol; 1992 Aug; 20(7):916-24. PubMed ID: 1321053 [Abstract] [Full Text] [Related]
3. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Nauseef WM, McCormick S, Yi H. Blood; 1992 Nov 15; 80(10):2622-33. PubMed ID: 1330078 [Abstract] [Full Text] [Related]
4. Biosynthesis and sorting of myeloperoxidase in hematopoietic cells. Olsson I, Bulow E, Hansson M. Jpn J Infect Dis; 2004 Oct 15; 57(5):S13-4. PubMed ID: 15507754 [Abstract] [Full Text] [Related]
5. Increased mutant frequencies in the HPRT gene locus of leukemia HL-60 cells treated with succinylacetone. Zheng KC, Yalowich JC, Kagan VE, Keohavong P. Cell Biol Toxicol; 2006 Sep 15; 22(5):361-70. PubMed ID: 16838078 [Abstract] [Full Text] [Related]
6. Translational control of erythroid delta-aminolevulinate synthase in immature human erythroid cells by heme. Smith SJ, Cox TM. Cell Mol Biol (Noisy-le-grand); 1997 Feb 15; 43(1):103-14. PubMed ID: 9074795 [Abstract] [Full Text] [Related]
7. Regulation of gene expression of myeloperoxidase during myeloid differentiation. Tobler A, Miller CW, Johnson KR, Selsted ME, Rovera G, Koeffler HP. J Cell Physiol; 1988 Aug 15; 136(2):215-25. PubMed ID: 2842344 [Abstract] [Full Text] [Related]
8. Biochemical and ultrastructural effects of monensin on the processing, intracellular transport, and packaging of myeloperoxidase into low and high density compartments of human leukemia (HL-60) cells. Akin DT, Kinkade JM, Parmley RT. Arch Biochem Biophys; 1987 Sep 15; 257(2):451-63. PubMed ID: 2821913 [Abstract] [Full Text] [Related]
9. Targeting myeloperoxidase to azurophilic granules in HL-60 cells. Lemansky P, Gerecitano-Schmidek M, Das RC, Schmidt B, Hasilik A. J Leukoc Biol; 2003 Oct 15; 74(4):542-50. PubMed ID: 12960244 [Abstract] [Full Text] [Related]
10. Inhibition of heme synthesis in bone marrow cells by succinylacetone: effect on globin synthesis. Beru N, Sahr K, Goldwasser E. J Cell Biochem; 1983 Oct 15; 21(2):93-105. PubMed ID: 6193131 [Abstract] [Full Text] [Related]
11. Biosynthesis and processing of myeloperoxidase--a marker for myeloid cell differentiation. Nauseef WM, Olsson I, Arnljots K. Eur J Haematol; 1988 Feb 15; 40(2):97-110. PubMed ID: 2831080 [Abstract] [Full Text] [Related]
12. The effect of haem biosynthesis inhibitors and inducers on intestinal iron absorption and liver haem biosynthetic enzyme activities. Laftah AH, Simpson RJ, Peters TJ, Raja KB. Toxicol Appl Pharmacol; 2008 Jun 15; 229(3):273-80. PubMed ID: 18384829 [Abstract] [Full Text] [Related]
13. Myeloperoxidase is a key regulator of oxidative stress mediated apoptosis in myeloid leukemic cells. Nakazato T, Sagawa M, Yamato K, Xian M, Yamamoto T, Suematsu M, Ikeda Y, Kizaki M. Clin Cancer Res; 2007 Sep 15; 13(18 Pt 1):5436-45. PubMed ID: 17875773 [Abstract] [Full Text] [Related]
14. Augmentation of hematoporphyrin uptake and in vitro-growth inhibition of L1210 leukemia cells by succinylacetone. Ebert PS, Hess RA, Tschudy DP. J Natl Cancer Inst; 1985 Mar 15; 74(3):603-8. PubMed ID: 3856064 [Abstract] [Full Text] [Related]
15. Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism. Richardson DR, Ponka P, Vyoral D. Blood; 1996 Apr 15; 87(8):3477-88. PubMed ID: 8605367 [Abstract] [Full Text] [Related]
16. Succinylacetone inhibits delta-aminolevulinate dehydratase and potentiates the drug and steroid induction of delta-aminolevulinate synthase in liver. Sassa S, Kappas A. Trans Assoc Am Physicians; 1982 Apr 15; 95():42-52. PubMed ID: 7182986 [Abstract] [Full Text] [Related]
17. Control of hemoglobin synthesis in erythroid differentiating K562 cells. I. Role of iron in erythroid cell heme synthesis. Kawasaki N, Morimoto K, Tanimoto T, Hayakawa T. Arch Biochem Biophys; 1996 Apr 15; 328(2):289-94. PubMed ID: 8645006 [Abstract] [Full Text] [Related]
18. Ferrochelatase, glutathione peroxidase and transferrin receptor mRNA synthesis and levels in mouse erythroleukemia cells. Fuchs O. Stem Cells; 1993 May 15; 11 Suppl 1():13-23. PubMed ID: 8318915 [Abstract] [Full Text] [Related]
19. Hereditary tyrosinemia and the heme biosynthetic pathway. Profound inhibition of delta-aminolevulinic acid dehydratase activity by succinylacetone. Sassa S, Kappas A. J Clin Invest; 1983 Mar 15; 71(3):625-34. PubMed ID: 6826727 [Abstract] [Full Text] [Related]
20. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R. Int J Oncol; 2004 Mar 15; 24(3):591-608. PubMed ID: 14767544 [Abstract] [Full Text] [Related] Page: [Next] [New Search]