These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 8044886

  • 1. Energy metabolism of reticulocytes: two different sources of energy for Na+K(+)-ATPase activity.
    Kostić MM, Zivković RV.
    Cell Biochem Funct; 1994 Jun; 12(2):107-12. PubMed ID: 8044886
    [Abstract] [Full Text] [Related]

  • 2. ATP production and consumption of rabbit reticulocytes increase in an amino-acid-enriched medium.
    Siems W, Müller M, Dubiel W, Dumdey R, Rapoport S.
    Biomed Biochim Acta; 1986 Jun; 45(5):585-91. PubMed ID: 3019323
    [Abstract] [Full Text] [Related]

  • 3. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE.
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [Abstract] [Full Text] [Related]

  • 4. Metabolism of intact reticulocytes and mitochondria under lowered energy load induced by cycloheximide.
    Augustin W, Trümper L, Spengler V.
    Biomed Biochim Acta; 1987 Aug; 46(2-3):S229-33. PubMed ID: 3036110
    [Abstract] [Full Text] [Related]

  • 5. A role of adenylate cyclase stimulation in energy metabolism of reticulocytes.
    Kostic MM, Maretzki DU, Zivkovic RV, Krause EG, Rapoport SM.
    Biomed Biochim Acta; 1987 Aug; 46(2-3):S234-8. PubMed ID: 3036111
    [Abstract] [Full Text] [Related]

  • 6. [The part of Na+K+-ATPase in total energy consumption in slices of brain and kidney cortex as well as in reticulocytes: a damaging effect of ouabain on brain cells].
    Zimmermann C, Rapoport SM.
    Acta Biol Med Ger; 1982 Aug; 41(11):1029-35. PubMed ID: 6303028
    [Abstract] [Full Text] [Related]

  • 7. Effects of phenylhydrazine hydrochloride on energy metabolism in rabbit erythrocytes and reticulocytes.
    Zivkovic RV, Kostic MM, Siems W, Werner A, Mojsilovic LP, Gerber G.
    Biomed Biochim Acta; 1990 Aug; 49(2-3):S172-7. PubMed ID: 2386504
    [Abstract] [Full Text] [Related]

  • 8. Energy metabolism in canine erythrocytes associated with inherited high Na+- and K+-stimulated adenosine triphosphatase activity.
    Maede Y, Inaba M.
    Am J Vet Res; 1987 Jan; 48(1):114-8. PubMed ID: 3030164
    [Abstract] [Full Text] [Related]

  • 9. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA, Paggi MG, Pedersen PL.
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [Abstract] [Full Text] [Related]

  • 10. Effect of repeated +Gz exposures on energy metabolism and some ion contents in brain tissues of rats.
    Sun XQ, Zhang LF, Wu XY, Jiang SZ.
    Aviat Space Environ Med; 2001 May; 72(5):422-6. PubMed ID: 11346006
    [Abstract] [Full Text] [Related]

  • 11. A kinetic study of the gill (Na+, K+)-ATPase, and its role in ammonia excretion in the intertidal hermit crab, Clibanarius vittatus.
    Gonçalves RR, Masui DC, McNamara JC, Mantelatto FL, Garçon DP, Furriel RP, Leone FA.
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Nov; 145(3):346-56. PubMed ID: 16931080
    [Abstract] [Full Text] [Related]

  • 12. Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP.
    Homareda H, Ushimaru M.
    FEBS J; 2005 Feb; 272(3):673-84. PubMed ID: 15670149
    [Abstract] [Full Text] [Related]

  • 13. The influence of SRC-family tyrosine kinases on Na,K-ATPase activity in lens epithelium.
    Bozulic LD, Dean WL, Delamere NA.
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):618-22. PubMed ID: 15671290
    [Abstract] [Full Text] [Related]

  • 14. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH, Fang CH, Schrantz SJ, Hasselgren PO, Paul RJ, Fischer JE.
    J Clin Invest; 1996 Nov 15; 98(10):2388-97. PubMed ID: 8941658
    [Abstract] [Full Text] [Related]

  • 15. Metabolic effects of (-)-isoprenaline stimulation of adenylate cyclase in reticulocytes.
    Kostic MM, Müller M, Maretzki D, Krause EG, Rapoport SM.
    Biomed Biochim Acta; 1986 Nov 15; 45(8):973-83. PubMed ID: 2430561
    [Abstract] [Full Text] [Related]

  • 16. Balance of ATP consumption of reticulocytes.
    Siems W, Dubiel W, Dumdey R, Müller M, Rapoport S.
    Biomed Biochim Acta; 1983 Nov 15; 42(11-12):S218-22. PubMed ID: 6675693
    [Abstract] [Full Text] [Related]

  • 17. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T, van Rossum GD, Russo MA, Palombini G.
    Cancer Res; 1976 Nov 15; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [Abstract] [Full Text] [Related]

  • 18. Mutant Phe788 --> Leu of the Na+,K+-ATPase is inhibited by micromolar concentrations of potassium and exhibits high Na+-ATPase activity at low sodium concentrations.
    Vilsen B.
    Biochemistry; 1999 Aug 31; 38(35):11389-400. PubMed ID: 10471289
    [Abstract] [Full Text] [Related]

  • 19. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation.
    MacDonald JA, Storey KB.
    Biochem Biophys Res Commun; 1999 Jan 19; 254(2):424-9. PubMed ID: 9918854
    [Abstract] [Full Text] [Related]

  • 20. Energy metabolism of renal cell lines, A6 and MDCK: regulation by Na-K-ATPase.
    Lynch RM, Balaban RS.
    Am J Physiol; 1987 Feb 19; 252(2 Pt 1):C225-31. PubMed ID: 3030121
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.