These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 805331

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Novel sterol transformations promoted by Saccharomyces cerevisiae strain GL7: evidence for 9 beta, 19-cyclopropyl to 9(11)-isomerization and for 14-demethylation to 8(14)-sterols.
    Venkatramesh M, Nes WD.
    Arch Biochem Biophys; 1995 Dec 01; 324(1):189-99. PubMed ID: 7503554
    [Abstract] [Full Text] [Related]

  • 44. Sterol composition and biosynthesis in mouse salivary glands.
    Hindy AM, Yoshiga K, Takada K, Okuda K.
    Arch Oral Biol; 1986 Dec 01; 31(2):87-93. PubMed ID: 3460541
    [Abstract] [Full Text] [Related]

  • 45. Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera: Acrididae).
    Behmer ST, Elias DO.
    Physiol Biochem Zool; 2000 Dec 01; 73(2):219-30. PubMed ID: 10801400
    [Abstract] [Full Text] [Related]

  • 46. The effect of cholesterol on ubiquinone and tetrahymanol biosynthesis in Tetrahymena pyriformis.
    Wilton DC.
    Biochem J; 1983 Oct 15; 216(1):203-6. PubMed ID: 6418144
    [Abstract] [Full Text] [Related]

  • 47. Sterols of Leishmania species. Implications for biosynthesis.
    Goad LJ, Holz GG, Beach DH.
    Mol Biochem Parasitol; 1984 Feb 15; 10(2):161-70. PubMed ID: 6700638
    [Abstract] [Full Text] [Related]

  • 48. Fatty acid methyl and ethyl esters in Tetrahymena pyriformis.
    Chu IM, Wheeler MA, Holmlund CE.
    Biochim Biophys Acta; 1972 May 23; 270(1):18-22. PubMed ID: 4624830
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51. Purification of campesterol and preparation of 7-dehydrocampesterol, 7-campestenol and campestanol.
    Kircher HW, Rosenstein FU.
    Lipids; 1974 May 23; 9(5):333-7. PubMed ID: 4857275
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Inhibition of cholesterol biosynthesis by Delta22-unsaturated phytosterols via competitive inhibition of sterol Delta24-reductase in mammalian cells.
    Fernández C, Suárez Y, Ferruelo AJ, Gómez-Coronado D, Lasunción MA.
    Biochem J; 2002 Aug 15; 366(Pt 1):109-19. PubMed ID: 12162789
    [Abstract] [Full Text] [Related]

  • 55. Biosorption of sterols from tobacco waste extract using living and dead of newly isolated fungus Aspergillus fumigatus strain LSD-1.
    Liu F, Zhang X, Wang M, Guo L, Yang Y, Zhao M.
    Biosci Biotechnol Biochem; 2020 Jul 15; 84(7):1521-1528. PubMed ID: 32183612
    [Abstract] [Full Text] [Related]

  • 56. Optimisation of plant sterols incorporation in human keratinocyte plasma membrane and modulation of membrane fluidity.
    Mora MP, Tourne-Peteilh C, Charveron M, Fabre B, Milon A, Muller I.
    Chem Phys Lipids; 1999 Sep 15; 101(2):255-65. PubMed ID: 10533266
    [Abstract] [Full Text] [Related]

  • 57. Biosynthesis of sterols by a yeast homogenate. Incorporation of mevalonic acid into cholesta-5,7,24-trien-3beta-ol and 5alpha-cholesta-7,24-dien-3beta-ol.
    Moreau JP, Ramm PJ, Caspi E.
    Eur J Biochem; 1975 Aug 15; 56(2):393-402. PubMed ID: 1100393
    [Abstract] [Full Text] [Related]

  • 58. The stereochemistry of hydrogen elimination at C-7,C-22 and C-23 during the conversion of cholesterol (cholest-5-en-3 beta-ol) into cholesta-5,7,22-trien-3 beta-ol by Tetrahymena pyriformis.
    Bimpson T, Goad LJ, Goodwin TW.
    Biochem J; 1969 Dec 15; 115(4):857-8. PubMed ID: 5357026
    [No Abstract] [Full Text] [Related]

  • 59. The conversion of cholest-5-en-3beta-ol into cholest-7-en-3beta-ol by the echinoderms Asterias rubens and Solaster papposus.
    Smith AG, Goad LJ.
    Biochem J; 1975 Jan 15; 146(1):35-40. PubMed ID: 1147903
    [Abstract] [Full Text] [Related]

  • 60. Flavonoid aglycones and phytosterols from the Erigeron acris L. herb.
    Nazaruk J.
    Acta Pol Pharm; 2006 Jan 15; 63(4):317-9. PubMed ID: 17203871
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.